

Part 1 - The exchange of information
between partners in the value chain of
Industrie 4.0 (Version 1.0)

in cooperation with

SPECIFICATION

Details of the Asset
Administration Shell

16 |

Imprint

Publisher

Federal Ministry for Economic Affairs

and Energy (BMWi)

Public Relations

10119 Berlin

www.bmwi.de

Text and editing

Plattform Industrie 4.0

Bertolt-Brecht-Platz 3

10117 Berlin

Design and production

The Plattform Industrie 4.0 secretariat, Berlin

Status

November 2018

Illustrations

Plattform Industrie 4.0; Anna Salari, designed by freepik (Title)

 | 3

Contents

1 Preamble .. 10

1.1 Editorial notes ... 11

1.2 Scope of this document ... 11

1.3 Structure of the document ... 11

1.4 Principles of the work ... 12

1.5 Terms & Definitions.. 12

1.6 Abbreviations .. 17

2 Basic concepts and leading picture .. 18

2.1 Basic concepts ... 19

2.2 Leading picture .. 19

3 The Metamodel of the Administration Shell .. 22

3.1 Introduction ... 23

3.2 Types and Instances .. 23

3.2.1 Life Cycle ... 23

3.2.2 Example .. 24

3.2.3 Metamodel of Asset Administration Shell Types and Instances .. 25

3.3 Identification of entities .. 26

3.3.1 Overview .. 26

3.3.2 What Identifiers exist? .. 26

3.3.3 Identifiers for Assets and Administration Shells .. 27

3.3.4 Which Identifiers to use for which entities ... 28

3.3.5 How are new Identifiers created? ... 29

3.3.6 Best practice for creating URI Identifiers ... 30

3.3.7 Creating a submodel instance based on an existing submodel type.. 31

3.3.8 Can new or proprietary submodels be formed? .. 31

3.3.9 Usage of short ID for identifiable entities .. 32

3.4 Overview Metamodel of the Administration Shell... 35

3.5 Metamodel Specification Details: Designators ... 36

3.5.1 Introduction .. 36

3.5.2 Common attributes ... 36

3.5.3 Asset Administration Shell Attributes .. 44

3.5.4 Asset Attributes .. 45

3.5.5 Submodel and Submodel Element Attributes ... 46

3.5.6 Overview of Submodel Element Types .. 50

3.5.7 Data Element Attributes ... 50

4 |

3.5.8 Data Element Collection Attributes .. 52

3.5.9 Relationship Attributes ... 53

3.5.10 Operation Attributes ... 53

3.5.11 View attributes.. 54

3.5.12 Concept Dictionary Attributes .. 55

3.5.13 Referencing in Asset Administration Shells ... 56

3.5.14 Types .. 57

3.5.15 Templates, Inheritance, Qualifiers and Categories ... 59

3.6 Predefined Data Specification templates ... 60

3.6.1 Concept of Data Specification Templates .. 60

3.6.2 Predefined Templates for Property Descriptions .. 60

4 Mappings to data formats to share I4.0-compliant information ... 62

4.1 General .. 63

4.2 General Rules .. 63

4.3 Unified example .. 64

4.4 XML .. 66

4.4.1 General ... 66

4.4.2 Introduction .. 66

4.4.3 Rules ... 66

4.4.4 Example for top-level structures ... 67

4.4.5 XSD Model Groups .. 68

4.4.6 Keys and References .. 69

4.4.7 Asset Administration Shell Mapping.. 69

4.4.8 ConceptDescriptions and EmbeddedDataSpecifications Mapping ... 70

4.5 JSON ... 72

4.5.1 General ... 72

4.5.2 Rules ... 72

4.5.3 Example for top-level structures ... 72

4.5.4 Examples for References to Identifiables ... 73

4.5.5 Examples for Descriptions.. 74

4.5.6 Examples for ReferenceElement .. 74

4.5.7 Examples for GlobalReference ... 76

4.5.8 Example for a kind = "type" Reference .. 77

4.6 RDF ... 78

4.7 OPC UA .. 78

4.8 AutomationML .. 78

5 Attribute Based & Role Based Access ... 80

5.1 Passing Permissions for Access .. 81

 | 5

5.1.1 Effective Access based on Access Permission Rules ... 81

5.2 Filtering of Information in Export and Import .. 82

5.3 Overview Metamodel Asset Administration Shell for Security .. 83

5.4 Metamodel Specification Details: Designators ... 86

5.4.1 Introduction .. 86

5.4.2 Common ... 86

5.4.3 Security Attributes .. 87

5.4.4 Access Control Policy Point Attributes .. 87

5.4.5 Local Access Control Attributes ... 89

5.4.6 Attributes for Access Permission Rule ... 91

6 Package File Format for the Asset Administration Shell (AASX) ... 94

6.1 General .. 95

6.2 Selection of the reference format for the Asset Administration Shell package format 95

6.3 Basic concepts of the Open Packaging Conventions ... 96

6.4 Conventions for the Asset Administration Shell package file format (AASX) 96

6.5 Logical model.. 97

6.6 Physical model .. 98

6.7 Digital signatures .. 101

6.8 Encryption ... 103

7 Summary and Outlook ... 106

Annex A. Concepts of the Administration Shell ... 109

1. General .. 109

2. Relevant sources and documents ... 109

3. Basic concepts for Industrie 4.0 .. 109

4. The concept of properties .. 110

5. The concept of submodels ... 111

6. Basic Structure of the Asset Administration Shell .. 112

7. Requirements... 114

Annex B. Templates for UML Tables ... 121

Annex C. Legend for UML Modelling ... 122

Annex D. Metamodel UML with inherited Attributes .. 124

Annex E. XML schemas and complete example .. 127

1. XML Schemas for Administration Shell ... 127

2. Schema for overall Administration Shell .. 127

3. AAS IEC61360 Datatype .. 133

4. XML Example ... 134

Annex F. JSON schema and complete examples .. 137

1. JSON Schema for Administration Shell .. 137

6 |

2. JSON Example .. 144

Annex G. Bibliography ... 146

 | 7

Table of Tables

Table 1 Life cycle phases and roles of type and instance ... 23

Table 2 Identifiables, attributes and allowed identifiers ... 28

Table 3 Proposed structure for URIs .. 30

Table 4 Example URN and URL-based Identifiers of the Administration Shell .. 30

Table 5 Basic types used in Metamodel ... 59

Table 6 Distinction of different data format for the AAS ... 63

Table 7 Minimal XML for top level structure .. 67

Table 8 Using XSD Model Groups ... 68

Table 9 Minimal JSON for top level structure .. 73

Table 10 Exemplary minimal JSON for References ... 74

Table 11 Exemplary minimal JSON for top level structure .. 74

Table 12 Exemplary ReferenceElement in JSON ... 75

Table 13 Exemplary GlobalReference in JSON ... 76

Table 14 Exemplary type Reference in JSON .. 77

Table 15 Example Filtering of Information in XML .. 83

Table 16 Set of possible policies based on how package files are signed, how to enable a given policy and the

consequences of a policy .. 102

Table 17 JSON schema ... 137

Table 18 JSON complete example .. 144

Table of Figures

Figure 1 Use Case File Exchange between Value Chain Partners .. 19

Figure 2 File Exchange between two value chain partners ... 20

Figure 3 Exemplary types and instances of assets represented by multiple AAS ... 24

Figure 4 Exemplary relations between metamodel of AAS, AAS types and AAS instances ... 26

Figure 5 The Administration Shell needs a unique Identifier, as well as each of the asset being described. Modified

figure from [4] .. 27

Figure 6 Motivation of exemplary identifiers and idShort.. 32

Figure 7 Overview Metamodel of the Asset Administration Shell ... 33

Figure 8 Metamodel package overview .. 34

Figure 9 Metamodel for Identifiables and Referables... 36

Figure 10 Metamodel for Identifier .. 38

Figure 11 Metamodel for HasKind ... 39

8 |

Figure 12 Metamodel for Administrative Information ... 40

Figure 13 Metamodel for Semantic References (HasSemantics) .. 41

Figure 14 Metamodel Qualifiables and Constraints ... 41

Figure 15 Example Formula .. 42

Figure 16 Metamodel for HasDataSpecification .. 43

Figure 17 Metamodel AssetAdministrationShell .. 44

Figure 18 Metamodel of Asset .. 45

Figure 19 Metamodel for Submodel ... 46

Figure 20 Metamodel for Submodel Element Types .. 48

Figure 21 Metamodel for Data Elements and its Subtypes ... 49

Figure 22 Metamodel for Submodel Element Collections .. 52

Figure 23 Metamodel of Relationship Elements ... 53

Figure 24 Metamodel of Operations ... 53

Figure 25 Metamodel of Views .. 54

Figure 26 Metamodel of Concept Dictionary ... 55

Figure 27 Metamodel for References and Keys .. 56

Figure 28 Built-In Types of XML Schema Definition 1.1 (XSD) .. 58

Figure 29 Concept of Data Specification Templates ... 60

Figure 30 Data Specification Template for defining Property Descriptions conformant to IEC 61360 60

Figure 31 Overview Concept Descriptions and Data Specification Templates .. 61

Figure 32 Graphic View on Exchange Data Formats for the Asset Administration Shell .. 63

Figure 33 Example rotation speed for serialization to data formats ... 65

Figure 34 Top level structure of an AssetAdministration Shell environment mapped to XML Schema 67

Figure 35 XSD Model Groups .. 68

Figure 36 Keys and References .. 69

Figure 37 Overview on mapping and meta-data ... 70

Figure 38 Concept description in XML in general ... 70

Figure 39 Data specification via IEC 61360 property attributes ... 71

Figure 40 Top level structure of an AssetAdministration Shell environment mapped to JSON 73

Figure 41 Submodel reference in AssetAdministrationShell for JSON .. 73

Figure 42 Usage of ReferenceElement in JSON ... 75

Figure 43 Usage of GlobalReference in JSON ... 76

Figure 44 Exemplary type Reference in JSON ... 77

Figure 45 Example Filtering for Export and Import ... 82

Figure 46 Attribute Based Access Control [22] .. 84

Figure 47 Metamodel Overview Access Control of AAS .. 85

Figure 48 Security Overview Packages .. 86

Figure 49 Metamodel for Security Attributes of AAS .. 87

 | 9

Figure 50 Metamodel for Access Control ... 87

Figure 51 Metamodel for Access Control ... 89

Figure 52 Metamodel for Access Permission Rule ... 91

Figure 53 Logical model for the AASX format .. 97

Figure 54 Physical model for an AASX based on a sample product (left) and an example of mapping to the logical

model (right) ... 100

Figure 55 Important concepts of Industrie 4.0 attached to the asset [2, 23]. I4.0 Component to be formed by

Administration Shell and asset. .. 110

Figure 56 Exemplary definition of a property in the IEC CDD .. 111

Figure 57 Examples of different domains providing properties for submodels of the Administration Shell.................. 112

Figure 58 Basic structure of the AssetAdministration Shell ... 113

Figure 59 Aggregation in Metamodel in UML – Legend ... 122

Figure 60 Association in Metamodel in UML - Legend ... 122

Figure 61 Composition in Metamodel in UML - Legend ... 122

Figure 62 Identification in Metamodel in UML - Legend .. 122

Figure 63 Inheritance Classes in Metamodel in UML - Legend ... 123

Figure 64 Inheritance Enumerations in Metamodel in UML - Legend ... 123

Figure 65 Core Model with inherited Attributes ... 124

Figure 66 Access Control with inherited attributes .. 125

Figure 67 Submodel Element Collection with inheritance ... 126

10 | PREAMBLE

1 Preamble

PREAMBLE | 11

1.1 Editorial notes

This document was produced Sep 2017 to July 2018 by a joint working group with members from ZVEI SG ‘Models

and Standards' and Platform Industrie 4.0 working group WG1. The document was subsequently validated by the

platform’s WG1.

For better readability, in compound terms the abbreviation "I4.0" is consistently used for "Industrie 4.0". Used on its

own "Industrie 4.0" continues to be used.

1.2 Scope of this document

The aim of this document is to make selected specifications of the structure of the Administration Shell in such a way

that information about assets and I4.0 components can be exchanged in a meaningful way between partners in a value

creation network.

This part of this document therefore focuses on the question of how such information needs to be processed and

structured. In order to make these specifications, the document formally stipulates a few structural principles of the

Administration Shell. This part does not describe technical interfaces of the Administration Shell or other systems to

exchange information, protocols or interaction patterns.

The document addresses the parallel DIN SPEC 92000 standardisation process for property value statements [15] and

reflects important aspects in this document.

This document focuses on:

• Transport of information from one partner in the value chain to the next

• Administration Shell, submodels and their structures

• Identifiers

• Access rights and roles concept

This document currently features the version V1.0. It targets to be adequately complete and coherent to be used as basis

for developments and as input for discussion with international standardization organisations and further cooperations.

A version V1.1 is intended to include additional mappings and features and should incorporate input from validation

testbeds and international standardization.

The definitions in and the form of the document should be such that development departments in the value creation

networks have enough detailed information to start work on internal systems for exchanging information and on

corresponding databases.

1.3 Structure of the document

Chapter 2 summarises relevant, existing content from the standardisation of Industrie 4.0. In other words, this clause

provides an overview and explains the motives, and is not absolutely necessary for an understanding of the subsequent

definitions.

Chapter 3 stipulates sufficient structural principles of the Administration Shell in a formal manner in order to ensure an

exchange of information between the Administration Shells. An excerpt of a UML diagram is drafted for this purpose.

A more comprehensive UML discussion which does not set standards can be found in the annex.

Chapter 4 provides detailed definitions for the exchange of I4.0-compliant information in existing data formats like

XML, AutomationML, OPC UA information models, JSON or RDF. An explanation is provided for each of these data

formats stating how information is to be represented (metamodel), and an example of a representation is provided.

Chapter 5, 6, 7 describes the promotion of attribute based access models for information security.

Chapter 9 describes, how the information of one or more Administration Shell could be packed into a compound file

format.

12 | PREAMBLE

1.4 Principles of the work

The work is based on the following principle: as simple as possible, only absolutely necessary things are described.

For creating a detailed specification of the Administration Shell according to the scope of part 1 ( 1.2), result papers

published by Plattform Industrie 4.0, the Trilateral cooperation with France and Italy and international standardisation

results were analysed and takes as source of requirements for the specification process. As many ideas as possible from

the discussion papers were considered.

The partners represented in the Plattform Industrie 4.0 and associations such as the ZVEI, the VDMA, VDI/ VDE and

Bitkom, ensure that there is broad sectoral coverage, both in process, hybrid and factory automation and in terms of

integrating information technology (IT) and operational technology (OT).

Design alternatives were intensively discussed within the working group. An extensive feedback process with the so

called "sounding board" of this document series, with the Plattform's working groups and with associated partners were

engaged about the design alternatives and the final content of the specification.

Guiding principle for the specification was to provide detailed information, which can be easily implemented also by

small and medium-sized enterprises.

1.5 Terms & Definitions

Forward notice

Definition of terms are only valid in a certain context. The current glossary applies to the context of this

document.

access control

protection of system resources against unauthorized access; a process by which use of system resources is regulated

according to a security policy and is permitted by only authorized entities (users, programs, processes, or other systems)

according to that policy

 [SOURCE: IEC TS 62443-1-1]

application

software functional element specific to the solution of a problem in industrial-process measurement and control

Note: An application may be distributed among resources and may communicate with other applications.

 [SOURCE: IEC TR 62390:2005-01, 3.1.2]

asset

physical or logical object owned by or under the custodial duties of an organization, having either a perceived or actual

value to the organization

Note: In the case of industrial automation and control systems, the physical assets that have the largest directly
measurable value may be the equipment under control.

 [SOURCE: IEC TS 62443-1-1:2009, 3.2.6]

PREAMBLE | 13

asset administration shell (AAS)

standardized digital representation of the asset, corner stone of the interoperability between the applications managing

the manufacturing systems. It identifies the Administration Shell and the assets represented by it, holds digital models

of various aspects (submodels) and describes technical functionality exposed by the Administration Shell or respective

assets.

Note: Asset Administration Shell and Administration Shell are use synonymously.

 [SOURCE: Glossary Industrie 4.0]

attribute

data element for the computer-sensible description of a property, a relation or a class

 [SOURCE: ISO/IEC Guide 77-2]

class

description of a set of objects that share the same attributes, operations, methods, relationships, and semantics

 [SOURCE: IEC TR 62390:2005-01, 3.1.4]

component

product used as a constituent in an assembled product, system or plant

 [SOURCE: IEC 61666:2010, 3.6]

concept

unit of knowledge created by a unique combination of characteristics

 [SOURCE: IEC 61360-1, ISO 22274:2013, 3.7]

identifier (ID)

identity information that unambiguously distinguishes one entity from another one in a given domain

Note: There are specific identifiers, e.g. UUID Universal unique identifier, IEC 15418 (GS1).

 [SOURCE: Glossary Industrie 4.0]

instance

concrete, clearly identifiable component of a certain type

Note: It becomes an individual entity of a type, for example a device, by defining specific property values.
Note: In an object-oriented view, an instance denotes an object of a class (of a type).

14 | PREAMBLE

 [SOURCE: IEC 62890:2016, 3.1.16] 65/617/CDV

operation

executable realization of a function

Note: The term method is synonym to operation
Note: an operation has a name and a list of parameters [ISO 19119:2005, 4.1.3]

 [SOURCE: Glossary Industrie 4.0 (work in progress)]

property

defined characteristic suitable for the description and differentiation of products or components

Note: The concept of type and instance applies to properties.
Note: This definition applies to properties such as described in IEC 61360/ ISO 13584 -42
Note: The property types are defined in dictionaries (like IEC component Data dictionary or eCl@ss), they do not

have a value. The property type is also called data element type in some standards.
Note: The property instances have a value and they provided by the manufacturers. A propert y instance is also

called property-value pair in certain standards.
Note: Properties include nominal value, actual value, runtime variables, measurement values, etc.
Note: A property describes one characteristic of a given object.
Note: A property can have attributes such as code, version, and revision.
Note: The specification of a property can include predefined choices of values.

 [SOURCE:according ISO/IEC Guide 77-2] as well as [SOURCE:according Glossary Industrie 4.0]

qualifier

well-defined element associated with a property instance or submodel element, restricting the value statement to a

certain period of time or use case

Note: qualifier can have value associated

 [SOURCE: according to IEC 62569-1]

variable

software entity that may take different values, one at a time

 [SOURCE: IEC 61499-1]

view

projection of a model or models, which is seen from a given perspective or vantage point and omits entities that are not

relevant to this perspective

 [SOURCE: unified modelling language - UML]

virtual representation

entirety of information of the Administration Shell, such as submodels, properties and complex data objects, covering

digital models for the respective asset(s) for all applicable life-cycle phases

PREAMBLE | 15

 [SOURCE: [18]]

smart manufacturing

manufacturing approach, that improves its performance aspects with integrated and intelligent use of processes and

resources in cyber, physical and human spheres to create and deliver products and services, which also collaborates with

other domains within an enterprise's' value chains.

Note: Performance aspects include agility, efficiency, safety, security, sustainability or any other performance
indicators identified by the enterprise.

Note: In addition to manufacturing, other enterprise domains can include engineering, logistics, marketing,
procurement, sales or any other domains identified by the enterprise.

Note: this definition is, as of November 2018, under discussion within the ISO/ IEC joint working group (JWG) 21.
However, it gives a good indication and a citable source.

 [SOURCE: ISO/TMB/SMCC]

submodel

used to structure the virtual representation and technical functionality of an Administration Shell into distinguishable

parts. Each submodel refers to a well-defined domain or subject matter. Submodels can become standardized and thus

become submodels types. Submodels can have different life-cycles.

Note: The concept of type and instance applies to submodels.

submodel element

element suitable for the description and differentiation of assets

Note: extends the definition of properties
Note: could comprise operations, binary objects

system

interacting, interrelated, or interdependent elements forming a complex whole

 [SOURCE: IEC TS 62443-1-1:2009, 3.2.123]

technical functionality

functionality of the Administration Shell that is exposed by an application programming interface (API) and that is

creating added value to the respective assets(s).

 Note: can consist of single elements, which are also known as functions, operations, methods, skills.

 [SOURCE: according [18]]

template

specification of the common features of an object in sufficient detail that such object can be instantiated using it

Note: object can be anything that has a type

 [SOURCE: according ISO/IEC 10746-2]

16 | PREAMBLE

type

hardware or software element which specifies the common attributes shared by all instances of the type

 [SOURCE: IEC TR 62390:2005-01, 3.1.25]

PREAMBLE | 17

1.6 Abbreviations

Abbreviation Description

AAS Asset Administration Shell

AASX Package file format extension for the AAS

AML AutomationML

API Application programmers interface

BITKOM
Bundesverband Informationswirtschaft, Telekommunikation und neue Medien

e. V.

BLOB Binary Large Object

CDD Common Data Dictionary

GUID Globally unique identifier

I4.0 Industrie 4.0

ID Identifier

IEC International Electrotechnical Commission

IRDI International Registration Data Identifier

ISO International Organization for Standardization

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OPC UA Unified Architecture for the Object Linking and Embedding for Process Control

PDF Portable Document Format

RAMI4.0 Reference Architecture Model Industrie 4.0

RDF Resource Description Framework

REST Representational State Transfer

RFC Request for Comment

ROA Ressource Oriented Architecture

SOA Service Oriented Architecture

STEP Standard for the exchange of product model data

UML Unified Modeling Language

URI, URL, URN Uniform Resource Identifier, Locator, Name

VDE Verein Deutscher Ingenieure

VDE Verband der Elektrotechnik Elektronik Informationstechnik e. V.

VDMA Verband Deutscher Maschinen- und Anlagenbau e.V.

W3C World Wide Web Consortium

XML eXtensible Markup Language

ZIP archive file format that supports lossless data compression

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e. V.

18 | BASIC CONCEPTS AND LEADING PICTURE

2 Basic concepts and leading picture

BASIC CONCEPTS AND LEADING PICTURE | 19

2.1 Basic concepts

Many concepts for Industrie 4.0 and smart manufacturing are already existing. The most important ones are summarised

in the informative Annex A.

2.2 Leading picture

The leading use case in this document is the exchange of an Asset Administration Shell including all its auxiliary

documents and artifacts from one value chain partner to another. This is, in this document we do not deal with the use

case of already deployed Asset Administration Shells running in a specific infrastructure but only with file exchange

between partners.

Figure 1 Use Case File Exchange between Value Chain Partners

Figure 1 shows the overall picture. It depicts two value chain partners; "Supplier" is going to provide some products,

"Integrator" is going to utilize this products in order to build a machine. Two kinds of Administration Shells are being

provided; one for the asset being the type of a product, one for the assets being the actual product instances. "Supplier"

and "Integrator" are forming two independent legal bodies (Figure 2).

Picture Hoffmeister, Jochem, according Epple, 2016

IntegratorSupplier

Internal

public

Repository

2

Publish

A1

T

B1

T

Receive Composite

Ty pe machine

Internal

A4

T

B4

T

C1

T

D1

Composite

Instance machineD4

product

ty pe

consolidate

deliv ery

product

I4.0-

platform

A2 A3

B2 B3

D2 D3

20 | BASIC CONCEPTS AND LEADING PICTURE

Figure 2 File Exchange between two value chain partners

The exchange of files needs to fulfil some requirements with respect to usability and security. There needs to be a

bilateral agreement on security constraints to be fulfilled for the transfer and usage of the files. This is explained in

more detail in chapter 5.

For usability a container format for exchanging files is used and a corresponding structure is defined (see clause 6). This

predefined structure helps the consumer to understand the content of the single files. This is important because an

AssetAdministration Shell specification can be spread across several files. Additionally, the container may contain

auxiliary files references by the AAS or even executable code.

Source: Plattform Industrie 4.0

Organizational boundary of partner “B"Organizational boundary of partner "A"

AAS D1

AAS E1

System boundary
I4.0 infrastructure of partner "A"

D2/D3

User of
partner "A"

Export

User of
partner "B"

Import
AAS D4

AAS E4

System boundary
I4.0 infrastructure of partner "B"

BASIC CONCEPTS AND LEADING PICTURE | 21

22 | THE METAMODEL OF THE ADMINISTRATION SHELL

3 The Metamodel of the Administration Shell

THE METAMODEL OF THE ADMINISTRATION SHELL | 23

3.1 Introduction

This clause specifies the information metamodel of the AssetAdministration Shell. Before doing so some general aspect

of the handling of asset types and instances are described (see clause 3.2 Types and Instances). Another very important

aspect of the AAS is the identification aspect, see clause 3.3 Identification of entities.

The metamodel for security aspects of the Administration Shell is described in clause 5.

The legend for understanding the UML diagrams and the table specification of the classes are found in Annex B and

Annex C.

3.2 Types and Instances

3.2.1 Life Cycle

Industrie 4.0 utilizes an extended understanding of asset, comprising elements such as factories, production systems,

equipment, machines, components, produced products and raw materials, business processes and orders, immaterial

assets (such as processes, software, documents, plans, intellectual property, standards), services and human personnel

and more.

The RAMI4.0 model [3] features one, generalized life-cycle axis, which was derived from IEC 62890. The basic idea is

to distinguish for all assets within Industrie 4.0 between possible types and instance. This makes it possible to apply the

type/instance distinction for all elements such as material type/material instance, product type/product instance,

machine type/ machine instance and more. Business related information will be handled on the 'Business' layer of the

RAMI4.0 model, as well, covering also order details and workflows, again with types/ instances.

Table 1 Life cycle phases and roles of type and instance

Phase Description

Type Development Valid from the ideation/ conceptualization to first prototypes/ test.

The 'type' of an asset is defined, and distinguishing properties and

functionalities are defined and implemented. All (internal) design

artefacts are created, such as CAD data, schematics, embedded

software, and associated with the asset type.

Usage /

Maintenance

Ramping up production capacity. The 'external' information

associated to the asset is created, such as technical data sheets,

marketing information. The selling process starts.

Instance Production Asset instances are created/ produced, based on the asset type

information. Specific information about production, logistics,

qualification and test are associated with the asset instances.

Usage /

Maintenance

Usage phase by the purchaser of the asset instances. Usage data is

associated with the asset instance and might be shared with other

value chain partners, such as the manufacturer of the asset instance.

Also included: maintenance, re-design, optimization and de-

commissioning of the asset instance. The full life-cycle history is

associated with the asset and might be archived/ shared for

documentation.

Table 1 gives an overview of the different life cycles phases and the role of type and instance in these phases: The most

important relationship is between asset types and asset instance. This relationship should be maintained throughout the

life of the asset instances. By this relationship, updates to the asset types can be forwarded to the asset instances, either

automatically or on demand.

24 | THE METAMODEL OF THE ADMINISTRATION SHELL

Note: for the distinction of 'type' and 'instance', the term 'kind' is used in this document.

The second class of relationships are feedback loops/ information within the life-cycle of the asset type and instance.

For product assets, for example, information on usage and maintenance of product instances can improve the

manufacturing of products as also cause design improvements for the (next) product type.

The third class of relationships are feedforward/ information exchange with assets of other asset classes. For example,

sourcing information from business assets can influence design aspects of products; or, the design of the products

affects the design of the manufacturing line.

Note: For an illustration of the second/ third class of relat ionships confer the NIST model, as well.

A forth class of relationships are between asset of different hierarchy levels. For example, these could be the (dynamic)

relationships between manufacturing stations and products being currently produced. These could be also the

decompositions of production systems in physical, functional or safety hierarchies. By this class of relationships,

automation equipment is explained as a complex, interrelated graph of automation devices and products, performing

intelligent production and self-learning/ optimization tasks.

3.2.2 Example

The following figure gives an example for handling of asset types and asset instances, handling some exemplary

information as well. Further explanation will follow in the next clauses.

Figure 3 Exemplary types and instances of assets represented by multiple AAS

Note: The example is simplified for ease of understanding and does only roughly comply to the metamodel as it is
specified in clause 4. The id handling is simplified as well: the names of the classes correspond to the unique
global identifier of the AASs.

Note: In the context of Platform Industrie 4.0 types and instances typically refer to ”asset types” and “asset
instances”. When referring to types or instances of an AAS this is explicitly denoted as “AAS types” and “AAS
instances” to not mix up both.

Note: Please refer to clause 1.5 for the IEC definition of types and instances. For the scope of this document, there
is no full equivalency between these definitions and the type/ instance concepts of object oriented
programming (OO).

There shall be a concrete asset type of a temperature sensor and two uniquely identifiable physical temperature sensors

of this type. The intention is to provide a separate AAS for the asset type as well as for every single asset instance.

In the example the first sensor has the unique ID “0215551AA_T1” and the second sensor has the unique ID

“0215551AA_T2”. The AAS for the first sensor has the unique URL “www.T1.com” and the AAS for the second

sensor has the unique URL “www.T2.com”. The kind for both is “Instance”. The example shows that the measured

temperature at operation time of the two sensors is different: for T1 it is 60 °C, for T2 it is 100 °C. For the time-being

we ignore the relationship “derivedFrom” of the two AAS “T1” and “T2” with AAS “www.T0215551AA.com”.

THE METAMODEL OF THE ADMINISTRATION SHELL | 25

Note: The unit can be obtained by the semantic reference of the element “measuredTemperature”. For simplicity
this is not shown in the example.

These two asset instances do have a lot of information they share: the information of the asset type (in this example a

sensor type). For this asset type an own AAS is created. The unique ID for this AAS is “www.T0215551AA.com”, the

unique id of the sensor type is “0215551AA”. The kind in this case is “Type” and not “Instance”. The information that

is the same for all instances of this temperature sensor type is the ProductClass (=”Component”), the manufacturer

(=”Bosch”) and the English Description “=’precise and fast temperature measurement’” as well as the value range “-40

°C / 140 °C”.

Now the two AAS of the two asset instances may refer to the AAS of the asset type “0215551AA” using the

relationship attribute “derivedFrom”.

Note: "attribute" refers in the UML sense to the property or characteristic of a class (instance).
Note: Typically, if a specific asset type does exist, it exists in time before the respective asset instances.
Note: An AAS is used synonym to an AAS instance. An AAS may be realized based on an AAS type. AAS types are

out of scope of this document.
Note: In public standardization the AAS Types might be standardized. However, it is much more important to

standardize the property types (called property definitions or concept descriptions) or other submodel element
typed as well as complete submodel types because those can be reused in different AAS.

Note: In the domain of internet of things (IoT), asset instances are typically denoted as “Things” whereas asset
types are denoted as “Product”.

3.2.3 Metamodel of Asset Administration Shell Types and Instances

In the previous clause type and instances of assets were explained. Obviously the question then comes up how to

harmonize AAS as well as AAS types. In our example it can be seen that the attributes “assetId” and “kind” as well as

the global identifier (id, represented as name of the class) are present for all AAS. However, if there is no standard, it is

not clear that the semantics of “id”, “assetId” and “kind” are the same and it is not clear, which of the attributes are

mandatory and which are specific for the asset (type or instance). This is illustrated in Figure 4.

This is the task of this document: The definition of a metamodel that defines which attributes are mandatory and which

are optional for all AAS. The Platform Industrie 4.0 metamodel for AssetAdministration Shells is defined in clause 3.

Note: This approach ensures that requirement tAAS-#19 is fulfilled. Another approach could have been to define
two metamodels: one for asset types and one for asset instances. However, the large set of similarities
motivated to go with one metamodel.

Note: The metamodel itself does not prescribe mandatory submodels. This is another step of standardization similar
to the prescription of submodels of AAS Type level.

Note: An AAS type shall be realized based on the metamodel of an AAS as defined in this document. This Metamodel
is referred to as the “AAS Metamodel”

Note: It is not mandatory to define an AAS type before defining an AAS (instance). An AAS instance that does not
realize an AAS type shall be realized based on the Metamodel of an AAS as defined in this document.

26 | THE METAMODEL OF THE ADMINISTRATION SHELL

Figure 4 Exemplary relations between metamodel of AAS, AAS types and AAS instances

3.3 Identification of entities

3.3.1 Overview

Identifiers are needed according to [4] for the unique identification of many different entities within the domain of

smart manufacturing. For this reason, they are a fundamental element of a formal description of the Administration

Shell. Especially, identification is at least required for:

• Asset Administration Shells,

• assets,

• submodel instances and submodel types,

• property definitions/concept descriptions in external repositories, such as eCl@ss or IEC CDD

Identification will take place for two purposes:

(1) to uniquely distinguish all entities of an Administration Shell, and

(2) to relate entities to external definitions, such as submodel types and property definitions, in order to bind a

semantics to these data and functional entities of an Administration Shell.

3.3.2 What Identifiers exist?

In [4], [20], two standard-conforming global identification types are defined:

(a) IRDI - ISO29002-5, ISO IEC 6523 and ISO IEC 11179-6 [20] as an Identifier scheme for properties and

classifications. They are created in a process of consortium-wise specification or international standardisation.

To this end, users sit down together and feed their ideas into the consortia or standardisation bodies. Properties

in ISO, IEC help to safeguard key commercial interests. Repositories like eCl@ss and others make it possible

to standardise a relatively large number of Identifiers in an appropriately short time.

THE METAMODEL OF THE ADMINISTRATION SHELL | 27

(b) URI - URI and URL as identification of assets, Administration Shells and other (probably not standardised,

but globally unique) properties and classifications.

The following is also permitted:

(c) Custom - Internal custom Identifiers such as GUIDs (globally unique Identifiers), which a manufacturer can

use for all sorts of in-house purposes within the Administration Shell.

This means that the URIs/URLs and internal custom Identifiers can represent and communicate manufacturer-specific

information and functions in the Administration Shell and the 4.0 infrastructure just as well as standardised information

and functions. One infrastructure can serve both purposes.

Besides the global Identifiers there are also Identifiers that are unique only within a defined namespace, typically its

parent element. These Identifiers are also called local identifiers. Example: Properties within a submodel have local

identifiers.

3.3.3 Identifiers for Assets and Administration Shells

For the domain of smart manufacturing, the assets need to be identified worldwide unique [4] [20] by the means of

identifiers (IDs). The Administration Shell has a unique ID, as well.

Figure 5 The Administration Shell needs a unique Identifier, as well as each of the asset being described.

Modified figure from [4]

An Administration Shell represents exactly one asset, with a unique asset ID. In a batch based production, the batches

will become the asset and will be described by a respective Administration Shell. If a set of assets shall be described by

an Administration Shell, a unique ID for the composite asset needs to be created [12].

Source: Plattform Industrie 4.0

Asset, e.g. electrical axis system

Administration shell, with unique ID

I4.0 compliant communication

Complex data,

with IDs

Documents,

with IDs

Properties, with IDs

Properties, with IDs

Properties, with IDs

I4.0 Component

Unique ID

28 | THE METAMODEL OF THE ADMINISTRATION SHELL

The ID of the asset needs to comply the restrictions for global Identifiers according [4] [20]. If the asset is featuring

further identifications, serial numbers and such, there are not to be confused with the unique global Identifiers of the

asset itself1.

3.3.4 Which Identifiers to use for which entities

Not every Identifier is applicable for every entity of the UML model; the following table therefore puts constraints on

the various entities, which implement "Identifiable" or "hasSemantics". Attributes relate to the metamodel in clause 3.4.

Table 2 Identifiables, attributes and allowed identifiers

Identifiable Attribute Allowed Identifiers Remarks

Asset

AdministrationShell

id URI
mandatory

Typically, URLs will be used

idShort string n/a

Asset
id URI

mandatory

Typically, URLs will be used [4]

idShort string mandatory

Submodel with kind =

Type

id IRDI, URI

mandatory

IRDI, if the defined submodel is standardized

and an IRDI was applied for it

idShort string

mandatory

Typically used as idShort for the submodel of

kind Instance as well

semanticId IRDI, URI

optional

The semantic id might refer to an external

information source, which explains the

formulation of the submodel (for example an

PDF if a standard)

Submodel with kind =

Instance

id URI, Custom mandatory

idShort string

mandatory

Typically, the IdShort or short name of the

submodel type referenced via semanticId

semanticId IRDI, URI

optional

The submodel type may be either a reference

to a submodel with kind=Type (within the

same or another AAS) or it can be an external

reference to an external standard defining the

semantics of the submodel.

SubmodelElement
semanticId IRDI, URI, Custom

mandatory (see Constraint);

links to the conceptDescription or the concept

definition in an external repository via a global

id

idShort string mandatory

1 Such additional local identifiers are contained in the submodel “assetIdentificationModel”.

THE METAMODEL OF THE ADMINISTRATION SHELL | 29

Typically the short name of the element

referenced via semanticId

ConceptDescription

id Custom or IRDI

mandatory

ConceptDescription needs to have a global id.

If the concept description is a copy from an

external dictionary like eCl@ss it may use the

same global id as it is used in the external

dictionary.

idShort string
n/a

or same as short name

isCaseOf

IRDI, URI

optional

links to the concept definition in an external

repository the concept description is a copy

from or that it corresponds to

semanticId n/a

n/a

the concept description defines the semantics,

if it mirrors another concept definition in an

external dictionary then isCaseOf should be

used

View

Qualifier

semanticId IRDI, URI
links to the view definition in an external

repository

idShort string mandatory

semanticId IRDI, URI, Internal
Links to the qualifier type definition in an

external repository

3.3.5 How are new Identifiers created?

Following the different identification types from clause 3.3.3, it can be stated:

(a) IRDIs are assumed to be already existing by an external specification and standardisation process, when it

comes to the creation of a certain Administration Shell. For bringing such IRDI Identifiers into life, refer to

clause 4 of the document [4].

(b) URIs and URLs can easily be formed by developers themselves, also on the fly when creating a certain

Administration Shell. All that is needed is a valid URL hostname, for example of the company, and to make

sure that the way the domain (e.g. www.festo.com) is organised ensures that the path behind the host name is

reserved in a semantically unique way for these Identifiers. In this way, each developer can create an arbitrary

URI or URL by combining the host name and some chosen path, which only needs to be unique in the

developer's organisation.

(c) Custom identifiers can also be easily formed by developers themselves. All that is necessary is for a

corresponding programmatic functionality2 to be retrieved. It is necessary to ensure that internal custom

Identifiers can be clearly distinguished from (a) or (b).

(d) Local identifiers can also be created on the fly. They have to be unique within their namespace, usually defined

by the parent relationship.

2 https://en.wikipedia.org/wiki/Universally_unique_identifier

https://en.wikipedia.org/wiki/Universally_unique_identifier

30 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.3.6 Best practice for creating URI Identifiers

The approach for semantics and interaction for I4.0 components [17] suggests the use of the following structure for

URIs3, which is slightly modified here. Idea is to always structure URI following a scheme of different elements:

Table 3 Proposed structure for URIs

Element Description
Syntax

component

Organisation Legal body, administrative unit or company issuing the ID A

Organisational sub unit/

Document /

Document sub unit

Sub entity in organisation above, or released specification or publication of

organisation above.
P

Submodel / Domain-ID
Submodel of functional or knowledge-wise domain of asset or

Administration Shell, the Identifier belongs to.
P

Version
Version number in line with release of specification or publication of

Identifier
P

Revision
Revision number in line with release of specification or publication of

Identifier
P

Property / Element-ID Property or further structural element ID of the Administration Shell P

Instance number
Individual numbering of the instances within release of specification or

publication
P

In the table, syntax component "A" refers to authority of RFC 3986 (URI) and namespace identifier of RFC 2141
(URN); "P" refers to path of RFC 3986 (URI) and namespace specific string of RFC 2141 (URN).

Using this scheme, valid URNs and URLs can be created, both being URIs. For the use of Administration Shells, URLs

are preferred, as functionality (such as REST services) can be bound to the Identifiers, as well. Examples of such

Identifiers are given in Table 4.

Table 4 Example URN and URL-based Identifiers of the Administration Shell

Identifier Description Property class Examples

Administration Shell

ID

ID of the

Administration Shell
Basis

urn:zvei:SG2:aas:1:1:demo11232322

http://www.zvei.de/SG2/aas/1/1/demo11232322

Submodel ID (Type)
Identification of type

of submodel

Selected submodels

are basis, others free

urn:GMA:7.20:contractnegotiation:1:1

http://www.vdi.de/gma720/contractnegotiation/1/1

Submodel ID

(Instance)

Identification of the

instance of the

submodel

Free

urn:GMA:7.20:contractnegotiation:1:1#001

http://www.vdi.de/gma720/

contractnegotiation/1/1#001

3 URLs are also URIs

THE METAMODEL OF THE ADMINISTRATION SHELL | 31

Property/parameter/

status type IDs

Identification of the

property, parameter

and status types

Domain-specific

urn:PROFIBUS:PROFIBUS-PA:V3-

02:Parameter:1:1:MaxTemp

http://www.zvei.de/SG2/aas/1/1/demo11232322/ma

xtemp

Property/parameter/

status instance IDs

(not used by

metamodel)

Identification of the

property, parameter

and status instance

Domain-specific

urn:PROFIBUS:PROFIBUS-PA:V3-02:Parameter:1:1:

MaxTemp#0002

http://www.zvei.de/SG2/aas/1/1/demo11232322/ma

xtemp#0002

Note: the last row of the table is only used for completion; the metamodel does not foresee identifiers for
property/parameter/status instances.

3.3.7 Creating a submodel instance based on an existing submodel type

In order to instantiate an existing submodel type, there should be a public specification of the submodel type, e.g. via

publication by Plattform Industrie 4.0. As a special case, instantiating a submodel from a non-public submodel type,

such as a manufacturer specification, is also possible.

As of November 2018, there are no finally published standardized submodel types available, but some examples are

described in [6], which provides simple tables listing properties in a predefined hierarchy.

In each submodel type, the Identifiers of property definitions to be used as semantic references are already

predefined. An instantiation of such submodel merely has to create properties with a semantic reference to the property

definitions and attach values to these properties.

In such case, the Identifier for the existing submodel type is also predefined, probably as a URL, and is to be used as

semantic reference for the submodel instance.

What remains is to create an Identifier of the submodel instance itself, which is in the regular case and URI/ URL.

Note: for maintaining integrity over multiple Administration Shells, appropriate referencing (derivedFrom) between
submodel instances and submodel types has to occur, as well as for submodel instances of interlinked asset
types and instances. A possible framework could then monitor and synchronize changes to the value
statements of the submodel instances according to user requirements (automatic synchronization is not
always desired).

3.3.8 Can new or proprietary submodels be formed?

It is in the interest of Industrie 4.0 for as many submodels as possible, including free and proprietary submodels, to be

formed ( [4], “Free property sets”). A submodel can be formed at any time for a specific Administration Shell of an

asset. For this purpose, the provider of the Administration Shell can form in-house Identifiers for the type and instance

of the submodel in line with Section 3.3.5. All I4.0 systems are called on to ignore submodels and properties that are not

individually known, and simply to “overlook” them. For this reason, it is always possible to deposit proprietary – e.g.

manufacturer-specific or user-specific – information, submodels or properties in an Administration Shell.

Note: it is in the intention of the Administration Shell, that proprietary information is included as well. For example to
link to company-wide identification schemes or information required for company-wide data processing. By
this, a single infrastructure can be used to transport standardized and proprietary information at the same
time; this conveys the introduction (and later standardization) of new information elements as well.

Note: if a submodel instance is formed without a clear relation to a submodel type or semantic definition, this will be
of limited use for other users/ accessing systems of the Administration Shell, as these cannot grasp the
semantic context of the data contained.

32 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.3.9 Usage of short ID for identifiable entities

The Administration Shell fosters the use of worldwide unique identifiers to a large degree. However, in some cases, this

may lead to inefficiencies. An example might be referring to a property, which is part of a submodel which is part of an

Administration Shell and each of these identified by global Identifiers [4]. For example, in an application featuring a

resource oriented architecture (ROA), a worldwide unique resource locator (URL) might be composed of a series of

segments, which in turn do not need to be worldwide unique:

Figure 6 Motivation of exemplary identifiers and idShort

In order to allow such efficient addressing of entities by an API of an Administration Shell, idShort is provided for a set

of classes of the metamodel, which inherit from abstract class Referable, in order to refer to such dependent entities (

3.4). However, an external system addressing resources of an Administration Shell is required to check the respective

semantics by asserting semanticId first, before accessing entities by id or idShort ( 3.5.2).

Source: Plattform Industrie 4.0

+ Identifier
SubmodelElement+

http://pk.festo.
com/3S7PLPGN

FL2

Identier
AdminShell

Identifier
Asset

Identifier
Submodel

http://smart.fest
o.com/aas/3434

3433432434

http://smart.fest
o.com/submodel

s/960594795
not identifiable

Entity:

Exemplary
id:

Exemplary
id respectively
idShort:

http://pk.festo.
com/3S7PLPGN

FL2

http://smart.fest
o.com/aas/3434

3433432434
energyefficiency set-point//

= represented by = belongs to / = chained together

THE METAMODEL OF THE ADMINISTRATION SHELL | 33

Figure 7 Overview Metamodel of the Asset Administration Shell

c
la

s
s

 O
v

e
rv

ie
w

P
ro

p
e

rt
y
 D

e
fi

n
it

io
n

s

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

Id
e

n
ti

fi
a

b
le

A
s

s
e

tA
d

m
in

is
tr

a
ti

o
n

S
h

e
ll

+

se
c
u

ri
ty

:
S

e
c
u

ri
ty

+

d
e

ri
v
e

d
F

ro
m

:
A

ss
e

tA
d

m
in

is
tr

a
ti

o
n

S
h

e
ll

*
[0

..
1

]

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

H
a

s
K

in
d

H
a

s
S

e
m

a
n

ti
c
s

Id
e

n
ti

fi
a

b
le

Q
u

a
li

fi
a

b
le

S
u

b
m

o
d

e
l

R
e

fe
ra

b
le

C
o

n
c

e
p

tD
ic

ti
o

n
a

ry

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

H
a

s
S

e
m

a
n

ti
c
s

R
e

fe
ra

b
le

V
ie

w

+

c
o

n
ta

in
e

d
E

le
m

e
n

t:
 R

e
fe

ra
b

le
*

[0
..

*]

«
e

x
te

rn
a

l»

P
ro

p
e

rt
y
 D

e
fi

n
it

io
n

IE
C

 6
1

3
6

0

in
c
l.

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

H
a

s
K

in
d

H
a

s
S

e
m

a
n

ti
c
s

Q
u

a
li

fi
a

b
le

R
e

fe
ra

b
le

«
a

b
st

ra
c
t»

S
u

b
m

o
d

e
lE

le
m

e
n

t

C
o

n
s
tr

a
in

t

H
a

s
S

e
m

a
n

ti
c
s

Q
u

a
li

fi
e

r

+

q
u

a
li

fi
e

rT
y
p

e
:

Q
u

a
li

fi
e

rT
y
p

e

+

q
u

a
li

fi
e

rV
a

lu
e

:
P

ro
p

e
rt

y
V

a
lu

e
T

y
p

e
 [

0
..

1
]

+

q
u

a
li

fi
ie

rV
a

lu
e

Id
:

R
e

fe
re

n
c
e

 [
0

..
1

]

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

H
a

s
K

in
d

Id
e

n
ti

fi
a

b
le

A
s

s
e

t

+

a
ss

e
tI

d
e

n
ti

fi
c
a

ti
o

n
M

o
d

e
l:

 S
u

b
m

o
d

e
l*

 [
0

..
1

]

D
a

ta
S

p
e

c
if

ic
a

ti
o

n
C

o
n

te
n

t

D
a

ta
S

p
e

c
if

ic
a

ti
o

n
IE

C
6

1
3

6
0

+

p
re

fe
rr

e
d

N
a

m
e

:
la

n
g

S
tr

in
g

+

sh
o

rt
N

a
m

e
:

st
ri

n
g

+

u
n

it
:

st
ri

n
g

 [
0

..
1

]

+

u
n

it
Id

:
R

e
fe

re
n

c
e

 [
0

..
1

]

+

so
u

rc
e

O
fD

e
fi

n
it

io
n

:
la

n
g

S
tr

in
g

 [
0

..
1

]

+

sy
m

b
o

l:
 s

tr
in

g
 [

0
..

1
]

+

d
a

ta
T

y
p

e
:

st
ri

n
g

+

d
e

fi
n

it
io

n
:

la
n

g
S

tr
in

g

+

v
a

lu
e

F
o

rm
a

t:
 s

tr
in

g
 [

0
..

1
]

+

v
a

lu
e

L
is

t:
 V

a
lu

e
L

is
t

[0
..

*]

+

c
o

d
e

:
C

o
d

e

D
a

ta
E

le
m

e
n

t

P
ro

p
e

rt
y

+

v
a

lu
e

T
y
p

e
:

a
n

y
S

im
p

le
T

y
p

e
D

e
f

+

v
a

lu
e

:
P

ro
p

e
rt

y
V

a
lu

e
T

y
p

e
 [

0
..

1
]

+

v
a

lu
e

Id
:

R
e

fe
re

n
c
e

 [
0

..
1

]

Id
e

n
ti

fi
e

r

+

id
T

y
p

e
:

Id
e

n
ti

fi
e

rT
y
p

e

+

id
:

Id

«
e

n
u

m
e

ra
ti

o
n

»

Id
e

n
ti

fi
e

rT
y
p

e

C

u
st

o
m

IR

D
I

U

R
I

E
x
e
m

p
la

ry
 d

a
ta

sp
e
c
if
ic

a
ti
o

n

te
m

p
la

te
 f

o
r

p
ro

p
e
rt

ie
s

Q
u

a
li

fi
a

b
le

R
e

fe
ra

b
le

A
c

c
e

s
s

P
e

rm
is

s
io

n
R

u
le

+

ta
rg

e
tS

u
b

je
c
tA

tt
ri

b
u

te
s:

 S
u

b
je

c
tA

tt
ri

b
u

te
s

[1
..

*]

+

p
e

rm
is

si
o

n
sP

e
rO

b
je

c
t:

 P
e

rm
is

si
o

n
sP

e
rO

b
je

c
t

[0
..

*]

«
e

n
u

m
e

ra
ti

..
.

K
in

d

T

y
p

e

In

st
a

n
c
e

H
a
sK

in
d

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

Id
e

n
ti

fi
a

b
le

C
o

n
c

e
p

tD
e

s
c

ri
p

ti
o

n

+

is
C

a
se

O
f:

 R
e

fe
re

n
c
e

 [
0

..
*]

E
x
e
m

p
la

ry
 S

u
b

m
o

d
e
l

E
le

m
e
n

t
"P

ro
p

e
rt

y
",

o
th

e
r

su
b

e
le

m
e
n

t

su
b

ty
p

e
s

in
c
lu

d
e

o
p

e
ra

ti
o

n
s,

 c
o

lle
c
ti
o

n
s,

fi
le

s
e
tc

.

m
a

y
 b

e
 u

se
d

a
s

D
a

ta

S
p

e
c
if

ic
a

ti
o

n

0
..

*

«
e

x
te

rn
a

l
g

lo
b

a
l

re
fe

re
n

c
e

»

1

0
..

*

0
..

*

0
..

*

0
..

*

34 | THE METAMODEL OF THE ADMINISTRATION SHELL

Figure 8 Metamodel package overview
c

la
s

s
 P

a
c

k
a

g
e

 O
v

e
rv

ie
w

B
a

s
ic

 C
o

n
c

e
p

ts

+
 A

ss
e

t

+
 A

ss
e

tA
d

m
in

is
tr

a
ti

o
n

S
h

e
ll

+
 I

d
e

n
ti

fi
e

r

+
 S

u
b

m
o

d
e

l

+
 V

ie
w

M
o

d
e

li
n

g

+
 C

o
n

st
ra

in
t

+
 F

o
rm

u
la

+
 Q

u
a

li
fi

e
r

+
 S

u
b

m
o

d
e

lE
le

m
e

n
t

+
 S

u
b

m
o

d
e

l
E

le
m

e
n

ts

S
u

b
m

o
d

e
l

E
le

m
e

n
ts

+
 B

lo
b

+
 D

a
ta

E
le

m
e

n
t

+
 E

v
e

n
t

+
 F

il
e

+
 O

p
e

ra
ti

o
n

+
 O

p
e

ra
ti

o
n

V
a

ri
a

b
le

+
 P

ro
p

e
rt

y

+
 R

e
fe

re
n

c
e

E
le

m
e

n
t

+
 R

e
la

ti
o

n
sh

ip
E

le
m

e
n

t

+
 S

u
b

m
o

d
e

lE
le

m
e

n
tC

o
ll

e
c
ti

o
n

D
ic

ti
o

n
a

ri
e

s

+
 C

o
n

c
e

p
tD

e
sc

ri
p

ti
o

n

+
 C

o
n

c
e

p
tD

ic
ti

o
n

a
ry

C
o

m
m

o
n

+
 A

d
m

in
is

tr
a

ti
v
e

In
fo

rm
a

ti
o

n

+
 H

a
sD

a
ta

S
p

e
c
if

ic
a

ti
o

n

+
 H

a
sK

in
d

+
 H

a
sS

e
m

a
n

ti
c
s

+
 I

d
e

n
ti

fi
a

b
le

+
 Q

u
a

li
fi

a
b

le

+
 R

e
fe

ra
b

le

+
 R

e
fe

re
n

c
in

g

+
 C

o
m

m
o

n
 T

y
p

e
s

+
 T

y
p

e
s

V
W

S
iD

 -
 P

a
rt

 1
 V

1
.0

+
 C

o
m

m
o

n

+
 B

a
si

c
 C

o
n

c
e

p
ts

+
 M

o
d

e
li

n
g

+
 S

e
c
u

ri
ty

+
 D

ic
ti

o
n

a
ri

e
s

+
 D

a
ta

 S
p

e
c
if

ic
a

ti
o

n
s

(T
e

m
p

la
te

s)

C
o

m
m

o
n

 T
y
p

e
s

+
 E

x
te

n
d

e
d

 T
y
p

e
s

(f
o

r
u

sa
g

e
 i

n
 M

e
ta

m
o

d
e

l,
 n

o
t

c
o

m
p

le
te

)

+
 S

im
p

le
 T

y
p

e
s

(f
o

r
u

sa
g

e
 i

n
 M

e
ta

m
o

d
e

l,
 n

o
t

c
o

m
p

le
te

)

D
a

ta
 S

p
e

c
if

ic
a

ti
o

n
s

 (
T
e

m
p

la
te

s
)

+
 D

a
ta

S
p

e
c
if

ic
a

ti
o

n

+
 D

a
ta

S
p

e
c
if

ic
a

ti
o

n
C

o
n

te
n

t

+
 D

a
ta

 S
p

e
c
if

ic
a

ti
o

n
s

fo
r

C
o

n
c
e

p
t

D
e

sc
ri

p
ti

o
n

s

E
x

te
n

d
e

d
 T

y
p

e
s

 (
fo

r
u

s
a

g
e

 i
n

 M
e

ta
m

o
d

e
l,

 n
o

t
c

o
m

p
le

te
)

+
 l

a
n

g
S

tr
in

g

S
im

p
le

 T
y
p

e
s

 (
fo

r
u

s
a

g
e

 i
n

 M
e

ta
m

o
d

e
l,

 n
o

t
c

o
m

p
le

te
)

+
 a

n
y
A

to
m

ic
T

y
p

e

+
 a

n
y
S

im
p

le
T

y
p

e

+
 a

n
y
T

y
p

e

+
 b

o
o

le
a

n

+
 b

y
te

+
 d

a
te

T
im

e

+
 d

e
c
im

a
l

+
 i

n
te

g
e

r

+
 l

a
b

e
l

+
 s

tr
in

g

D
a

ta
 S

p
e

c
if

ic
a

ti
o

n
s

 f
o

r
C

o
n

c
e

p
t

D
e

s
c

ri
p

ti
o

n
s

+
 D

a
ta

S
p

e
c
if

ic
a

ti
o

n
IE

C
6

1
3

6
0

T
y
p

e
s +
 a

n
y
S

im
p

le
T

y
p

e
D

e
f

+
 D

a
ta

T
y
p

e

+
 E

n
d

p
o

in
t

+
 M

im
e

T
y
p

e

+
 B

lo
b

T
y
p

e

+
 C

o
d

e

+
 I

d

+
 P

a
th

T
y
p

e

+
 P

ro
p

e
rt

y
V

a
lu

e
T

y
p

e

+
 Q

u
a

li
fi

e
rT

y
p

e

+
 V

a
lu

e
L

is
t

+
 K

in
d

S
e
c
u

ri
ty

 s
e
e
 s

e
p

a
ra

te

d
ia

g
ra

m

R
e

fe
re

n
c

in
g

+
 K

e
y

+
 R

e
fe

re
n

c
e

+
 I

d
e

n
ti

fi
a

b
le

E
le

m
e

n
ts

+
 I

d
e

n
ti

fi
e

rT
y
p

e

+
 K

e
y
E

le
m

e
n

ts

+
 K

e
y
T

y
p

e

+
 L

o
c
a

lK
e

y
T

y
p

e

+
 R

e
fe

ra
b

le
E

le
m

e
n

ts

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

«
im

p
o

rt
»

THE METAMODEL OF THE ADMINISTRATION SHELL | 35

3.4 Overview Metamodel of the Administration Shell

In this clause an overview of the main concepts of the AssetAdministration Shell metamodel is presented.

The main parts of an Asset Administration Shell (AAS) is the asset it is representing as well as the submodels.

Optionally, dictionaries and views may be part of the AAS. A dictionary contains so-called concept descriptions. For

details see clause 3.5.3. Views define a set of elements selected for a specific stakeholder. For details see clause 3.5.11.

An AAS represents exactly one asset. Asset types and asset instances are distinguished by setting the attribute “kind”.

For details see clause 3.5.2.3.

Note: the UML modelling uses so-called abstract classes for denoting reused concepts like “HasSemantics”,
“Qualifiable” etc.

In case of an AAS of an instance asset, a reference to the AAS representing the corresponding asset type or another

asset instance is was derived from may be added (derivedFrom). The same holds for AAS of an asset type: also types

can be derived from other types.

An asset typically may be represented by several different identification properties like for example the serial number,

its RFID code etc. Such local identification properties are defined in the asset identification submodel

(assetIdentificationModel). For details see clause 3.5.4.

AASs, assets, submodels and concept descriptions need to be globally uniquely identifiable (Identifiable). Other

elements like for example properties, single local dictionaries just need to be referable within the model and thus only

need a local identifier (idShort from Referable). For details on identification see Chapter 3.3 Identification of entities.

For details on Identifiable and Referable see 3.5.2.1.

Submodels consist of a set of submodel elements. Submodel elements may be qualified by a so-called Qualifier. For

details see clause 3.5.5.

There are different subtypes of submodel elements like properties, operations, collections etc. For details see clause

3.5.5. A typical submodel element is shown in the overview figure: a property. A property is a data submodel element

that has a value of simple type like string, date etc. For details on properties see clause 3.5.7.

Every submodel element needs a semantic definition (semanticId in HasSemantics). The submodel element might either

refer directly to a corresponding semantic definition provided by an external reference (e.g. to an eCl@ss or IEC CDD

property definition) or it may reference a submodel element of kind = Type that defines the semantics of submodel

elements of kind = Instance. For details see clause 3.5.2.5.

The AAS itself can also define its own dictionary that contains semantic definitions of its submodel elements. These

semantic definitions are called concept descriptions (ConceptDescription). It is optional whether an AAS defines its

own concept dictionary (ConceptDictionary) or not. For details see clause 3.5.12.

The concept dictionary may contain copies of property definitions of external standards. In this case a semantic

definition to the external standard shall be added (isCaseOf). isCaseOf is a more formal definition of

sourceOfDefinition that is just text.

Note: in this case most of the attributes are redundant because these are defined in the external standard. It is
about usability to add attributes for information like preferredName, unit etc. Consistency w.r.t. to the
referenced submodel element definitions should be ensured by corresponding tooling.

The concept dictionary may also contain proprietary definitions. In this case the provider of the AAS shall be aware that

no interoperability with other AAS can be ensured.

Data Specification Templates (hasDataSpecification) can be used to define which attributes (besides those predefined

by the metamodel) are used to define a submodel element or a concept description. For the concept description of

properties typically the Data Specification Template following IEC 61360 is used. For denoting recommended Data

Specification Templates to be used the <<template>>-dependency is used. For details see clause 3.5.2.6.

36 | THE METAMODEL OF THE ADMINISTRATION SHELL

Some Data Specification Templates like the template for IEC 61360 property definitions

(DataSpecification_IEC61360) are explicitly predefined and recommended to be used by the Plattform Industrie 4.0.

For details see clause 3.6.2. If proprietary templates are used, again, interoperability with other AAS cannot be ensured.

Besides submodel elements including properties and concept descriptions also other identifiable elements may use

additional templates (HasDataSpecification). For details see clause 3.5.2.7.

Submodel elements and the submodels themselves may have additional qualifiers (Qualifiable). Per Qualifiable there

might be more than one qualifier. For details see clause 3.5.2.6.

Additionally, Views can be defined within an AAS. Views may consist of any elements that are referable

(containedElement). A “Safety View”, for example, contains all properties or operations that are safety relevant and

need special treatment. For details see clause 3.5.11. A View definition can also be used in different life cycle stages.

For example, there could be a view for engineering and all referenced artefacts are deleted before delivering the AAS to

the customer.

For every AAS security aspects need to be considered (security). In this document the aspect of access control is

covered in more detail. So-called access permission rules are defined, that define which permission a specific

authenticated subject has on which object. For details see clause chapter.

Figure 8 gives a complete picture of all elements defined in the metamodel excluding security. Security is found in

clause 5.3.

3.5 Metamodel Specification Details: Designators

3.5.1 Introduction

In this clause the classes of the metamodel are specified in detail. In Annex B the template used to describe the classes

and relationships is explained. In Annex D some of the diagrams are shown together with all its inherited attributes to

give a complete overview.

For understanding the specifications, it is crucial to understand the common attributes first (clause 3.5.2). They are

reused throughout the specifications of the other classes (“inherits from”) and define important concepts like

identifiable, qualifiable etc. They are abstract, i.e. there is no object instance of such classes.

3.5.2 Common attributes

3.5.2.1 Identifiables & Referables

Figure 9 Metamodel for Identifiables and Referables

class Common - Identifiable and Referable

«abstract»

Identifiable

+ administration: AdministrativeInformation [0..1]

+ identification: Identifier

«abstract»

Referable

+ idShort: string [0..1]

+ category: string [0..1]

+ description: langString [0..1]

+ parent: Referable* [0..1]

THE METAMODEL OF THE ADMINISTRATION SHELL | 37

The metamodel distinguishes between elements that are identifiable, referable or none of both. An identifiable element

as a globally unique identifier (Identifier). Referable elements can be referenced but for doing so the context of the

element is needed. A referable has a short unique identifier (idShort) that is unique just in its context, its name space.

An identifiable is also referable but there are elements that are not referable: they are just attributes of a referable.

Identifiables may have administrative information like version etc.

A name space is defined as follows in this context: The parent element an element is part of and that is either referable

or identifiable is the name space of the element. Examples: A submodel is the name space for the properties contained

in it. The name space of a submodel element being contained in a submodel element collection is the submodel element

collection. However, for identifiables the name space is not important since identifiables per definition have a global

identifier.

Class: Referable <<abstract>>

Explanation: An element that is referable by its idShort. This id is not globally unique. This id is unique within the name space

of the element.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

idShort Identifying string of the element within its name space.

Constraint AASd-001: In case of a referable element not being

an identifiable element this id is mandatory and used for referring

to the element in its name space.

Constraint AASd-002: idShort shall only feature letters, digits,

underscore ("_"); starting mandatory with a letter.

Constraint AASd-003: idShort shall be matched case-insensitive.

Note: In case of an identifiable element idShort is optional but

recommended to be defined. It can be used for unique reference

in its name space and thus allows better usability and a more

performant implementation. In this case it is similar to the

“BrowserPath” in OPC UA.

Note: In case the element is a property and the property has a

semantic definition (HasSemantics) the idShort is typically

identical to the short name in English.

string attr 0..1

category The category is a value that gives further meta information w.r.t.

to the class of the element. It affects the expected existence of

attributes and the applicability of constraints.

Note: The category is not identical to the semantic definition

(HasSemantics) of an element. The category e.g. could denote

that the element is a measurement value whereas the semantic

definition of the element would denote that it is the measured

temperature.

string attr 0..1

description Description or comments on the element.

The description can be provided in several languages.

langString attr 0..1

parent Reference to the next referable parent element of the element.

Constraint AASd-004: Add parent in case of non-identifiable

elements.

Note: This element is used to ease navigation in the model and

thus it enables more performant implementation. In does not give

any additional information.

Referable ref* 0..1

38 | THE METAMODEL OF THE ADMINISTRATION SHELL

Class: Identifiable <<abstract>>

Explanation: An element that has a globally unique identifier.

Inherits from: Referable

Attribute

(*=mandatory)

Explanation Type Kind Card.

administration Administrative information of an

identifiable element.

Note: Some of the administrative

information like the version number might

need to be part of the identification.

AdministrativeInformation attr 0..1

identification* The globally unique identification of the

element.

Identifier attr 1

3.5.2.2 Identifier

Figure 10 Metamodel for Identifier

Information about identification can be found in Chapter 3.3 Identification of entities. In Chapter 3.3.4 constraints and

recommendation on when to use which type of Identifier can be found.

Examples for Identifiers can be found in Chapter 3.3.3 Identifiers for Assets and Administration Shells.

See Chapter 3.5.2.2 Identifier for information which identifier types are supported.

Class: Identifier

Explanation: Used to uniquely identify an entity by using an identifier.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

idType* Type of the Identifier, e.g. URI, IRDI etc.

The supported Identifier types are defined

in the enumeration “IdentifierType”.

IdentifierType attr 1

id* Identifier of the element.

Its type is defined in idType.

Id attr 1

Enumeration: IdentifierType

Explanation: Enumeration of different types of Identifiers for global identification

Literal Explanation

class Common - Identifier

Identifier

+ id: Id

+ idType: IdentifierType

«enumeration»

IdentifierType

 IRDI

 URI

 Custom

THE METAMODEL OF THE ADMINISTRATION SHELL | 39

IRDI IRDI according to ISO29002-5 as an Identifier scheme for properties and classifications.

URI URI

Custom Custom identifiers like GUIDs (globally unique Identifiers)

3.5.2.3 Has Kind Type or Instance

Figure 11 Metamodel for HasKind

Class: HasKind

Explanation: An element with a kind is an element that can either represent a type or an instance.

Default for an element is that it is representing an instance.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

Kind Kind of the element: either type or

instance.

Default Value = Instance

Kind attr 0..1

The kind enumeration is used to denote whether an element is of kind Type or Instance.

Enumeration: Kind

Explanation: Enumeration for denoting whether an element is a type or an instance.

Inherits from: --

Literal Explanation

Type

hardware or software element which specifies the common attributes shared by all instances

of the type

[SOURCE: IEC TR 62390:2005-01, 3.1.25]

Instance

concrete, clearly identifiable component of a certain type

Note: It becomes an individual entity of a type, for example a device, by defining specific

property values.

Note: In an object oriented view, an instance denotes an object of a class (of a type).

[SOURCE: IEC 62890:2016, 3.1.16] 65/617/CDV

For more information of types and instances see 3.23.2 Types and Instances.

class Common - HasKind

«abstract»

HasKind

+ kind: Kind [0..1] = Instance

«enumeration»

Kind

 Type

 Instance

40 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.5.2.4 Administrative Information

Figure 12 Metamodel for Administrative Information

Every Identifiable may have administrative information. Administrative information includes for example

• Information about the version of the element

• Information about who created or who made the last change to the element

• Information about the languages available in case the element contains text, for translating purposed also the

master or default language may be defined

In the first version of the AAS metamodel only version information as defined by IEC 61360 is defined. In later

versions additional attributes may be added.

Version corresponds in principle to the version_identifier according to IEC 62832 but is not used for concept identifiers

only (IEC TS 62832-1) but for all identifiable elements. Version and revision together correspond to the version number

according to IEC 62832.

AdministrativeInformation allows the usage of templates (HasDataSpecification) but there are no predefined templates

in this version of the metamodel.

Note: Some of the administrative information like the version number might need to be part of the identification.

Class: AdministrativeInformation

Explanation: Administrative metainformation for an element like version information.

Inherits from: HasDataSpecification

Attribute

(*=mandatory)

Explanation Type Kind Card.

version Version of the element.

string attr 0..1

revision Revision of the element.

Constraint AASd-005: A revision requires

a version. This means, if there is no

version there is no revision neither.

string attr 0..1

class Common - Administrative Information

HasDataSpecification

AdministrativeInformation

+ version: string [0..1]

+ revision: string [0..1]

Referable

«abstract»

Identifiable

+ administration: AdministrativeInformation [0..1]

+ identification: Identifier

THE METAMODEL OF THE ADMINISTRATION SHELL | 41

3.5.2.5 Semantic References

Figure 13 Metamodel for Semantic References (HasSemantics)

Class: HasSemantics <<abstract>>

Explanation: Element that can have a semantic definition.

Inherits from: --

Attribute (*=mandatory) Explanation Type Kind Card.

semanticId Identifier of the semantic definition of the

element. It is called semantic id of the

element.

The semantic id may either reference an

external global id or it may reference a

referable model element of kind=Type

that defines the semantics of the

element.

Note: In many cases the idShort is

identical to the short name within the

semantic definition as referenced via this

semantic id.

Reference attr 0..1

3.5.2.6 Qualifiables

Figure 14 Metamodel Qualifiables and Constraints

class Common - HasSemantics

«abstract»

HasSemantics

+ semanticId: Reference [0..1]

42 | THE METAMODEL OF THE ADMINISTRATION SHELL

For qualifiable elements additional qualifiers may be defined. For details on qualifiers and for predefined standardized

qualifier types see IEC 62569-1. For example, a level qualifier defining the level type minimal value, maximum value,

typical value and nominal value can be found in IEC 62569-1. Additional qualifier types are planned to be defined in

the ongoing work of DIN SPEC 92000 like for example expressions semantics and expression logic.

If there are no predefined qualifier types or the additional qualification is quite complex then instead of a set of

qualifiers also a formula can be defined.

In Figure 15 an example for a formula depending on the property “Status” is shown. Up to now no formula language is

defined for the AAS.

Figure 15 Example Formula

Class: Qualifiable <<abstract>>

Explanation: The value of a qualifiable element may be further qualified by one or more qualifiers or complex formulas.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

qualifier Additional qualification of a -qualifiable

element.

Constraint aggr 0..*

Class: Constraint <<abstract>>

Explanation: A constraint is used to further qualify an element.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

Class: Qualifier

Explanation: A qualifier is a type-value pair that makes additional statements w.r.t. the value of the element.

Inherits from: Constraint, HasSemantics

Attribute

(*=mandatory)

Explanation Type Kind Card.

qualifierType* The qualifierType describes the type of

the qualifier that is applied to the element.

QualifierType attr 1

THE METAMODEL OF THE ADMINISTRATION SHELL | 43

Class: Qualifier

qualifierValue The qualifier value is the value of the

qualifier.

Constraint AASd-006: if both, the value

and the valueId are present then the value

needs to be identical to the short name of

the referenced coded value in

qualifierValueId.

PropertyValueType attr 0..1

qualifierValueId Reference to the global unqiue id of a

coded value.

Reference Attr 0..1

Class: Formula

Explanation: A formula is used to describe constraints by a logical expression.

Inherits from: Constraint

Attribute

(*=mandatory)

Explanation Type Kind Card.

dependsOn A formula may depend on referable or

even external global elements - assumed

that can be referenced and their value

may be evaluated - that are used in the

logical expression.

Reference aggr 0..*

--

3.5.2.7 Template for Data Specification

Figure 16 Metamodel for HasDataSpecification

Class: HasDataSpecification <<abstract>>

Explanation: Element that can have data specification templates. A template defines the additional attributes

an element may or shall have.

Inherits from: --

Attribute (*=mandatory) Explanation Type Kind Card.

hasDataSpecification Global reference to the data

specification template used by the

element.

Reference aggr 0..*

class Common - Templating for Data Specifications

«abstract»

HasDataSpecification

+ hasDataSpecification: Reference [0..*]

44 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.5.3 Asset Administration Shell Attributes

Figure 17 Metamodel AssetAdministrationShell

An Administration Shell is uniquely identifiable since it inherits from Identifiable.

The derivedFrom attribute is used to establish a relationship between two AssetAdministration Shells that are derived

from each other. For more detailed information on the derivedFrom concept see clause 3.2 Types and Instances .

Class: AssetAdministrationShell

Explanation: An AssetAdministration Shell.

Inherits from: HasDataSpecification; Identifiable;

Attribute

(*=mandatory)

Explanation Type Kind Card.

derivedFrom The reference to the AAS the AAS

was derived from.

AssetAdministrationShell ref* 0..1

security* Definition of the security relevant

aspects of the AAS.

Security aggr 1

asset* The asset the AAS is representing. Asset ref* 1

submodel The asset of an AAS is typically

described by one or more

submodels.

Temporarily no submodel might be

assigned to the AAS.

Submodel ref* 0..*

conceptDictionary An AAS max have one or more

concept dictionaries assigned to it.

The concept dictionaries typically

contain only descriptions for

elements that are also used within

the AAS (via HasSemantics).

ConceptDictionary aggr 0..*

THE METAMODEL OF THE ADMINISTRATION SHELL | 45

Class: AssetAdministrationShell

view If needed stakeholder specific

views can be defined on the

elements of the AAS.

View aggr 0..*

3.5.4 Asset Attributes

Figure 18 Metamodel of Asset

Class: Asset

Explanation: An Asset describes meta data of an asset that is represented by an AAS.

The asset may either represent an asset type or an asset instance.

The asset has a globally unique identifier plus – if needed – additional domain specific (proprietary)

identifiers.

Inherits from: HasDataSpecification; Identifiable; HasKind

Attribute (*=mandatory) Explanation Type Kind Card.

assetIdentificationModel A reference to a Submodel that defines the handling of

additional domain specific (proprietary) Identifiers for

the asset like e.g. serial number etc.

Submodel ref* 0..1

class Asset

HasDataSpecification

HasKind

HasSemantics

Identifiable

Qualifiable

Submodel

HasDataSpecification

HasKind

Identifiable

Asset

+ assetIdentificationModel: Submodel* [0..1]

«enumerati...

Kind

 Type

 Instance

46 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.5.5 Submodel and Submodel Element Attributes

Figure 19 Metamodel for Submodel

Class: Submodel

Explanation: A Submodel defines a specific aspect of the asset represented by the AAS.

A submodel is used to structure the virtual representation and technical functionality of an Administration
Shell into distinguishable parts. Each submodel refers to a well-defined domain or subject matter.
Submodels can become standardized and thus become submodels types. Submodels can have different
life-cycles.

Inherits from: HasDataSpecification; HasSemantics; Identifiable; Qualifiable; HasKind

Attribute

(*=mandatory)

Explanation Type Kind Card.

submodelElement A submodel consists of zero or more

submodel elements.

SubmodelElement aggr 0..*

A submodel instance can reference the submodel type it was derived from. Formulated in a technical way: semanticId

of a Submodel with kind=Instance may refer to a Submodel of kind=Type (kind inherited via HasKind).

A submodel can be qualified (Qualifiable).

Submodel element are qualifiable elements, i.e. one or more qualifier may be defined for each of them.

Submodels and submodel elements may also have data specification templates defined for them. A template might for

example be defined to mirror some of the attributes like preferredName and unit of a property definition if the AAS

does not contain a corresponding concept description. Otherwise there only is the property definition referenced by

semanticId available for the property: the lookup of the attributes has to be realized online in a different way and is not

available offline.

THE METAMODEL OF THE ADMINISTRATION SHELL | 47

In case the submodel is of kind=Type then the submodel elements within the submodel are presenting submodel

element types. In case the submodel is of kind=Instance then its submodel elements represent submodel element

instances.

Class: SubmodelElement <<abstract>>

Explanation: A submodel element is an element suitable for the description and differentiation of assets.

NOTE:
The concept of type and instance applies to submodel elements. Properties are
special submodel elements.
The property types are defined in dictionaries (like the IEC Common Data Dictionary
or eCl@ss), they do not have a value. The property type (kind=Type) is also called
data element type in some standards.
The property instances (kind=Instance) typically have a value. A property instance
is also called property-value pair in certain standards.

Inherits from: HasDataSpecification; Referable; Qualifiable; HasSemantics; HasKind

Attribute

(*=mandatory)

Explanation Type Kind Card.

48 | THE METAMODEL OF THE ADMINISTRATION SHELL

Figure 20 Metamodel for Submodel Element Types

 c
la

s
s

 S
u

b
m

o
d

e
l

E
le

m
e

n
t

S
u

b
ty

p
e

s

O
p

e
ra

ti
o

n

+

in
:

O
p

e
ra

ti
o

n
V

a
ri

a
b

le
 [

0
..

*]

+

o
u

t:
 O

p
e

ra
ti

o
n

V
a

ri
a

b
le

 [
0

..
*]

R
e

la
ti

o
n

s
h

ip
E

le
m

e
n

t

+

fi
rs

t:
 R

e
fe

ra
b

le
*

+

se
c
o

n
d

:
R

e
fe

ra
b

le
*

«
a

b
st

ra
c
t»

E
v

e
n

t

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

H
a

s
K

in
d

H
a

s
S

e
m

a
n

ti
c
s

Q
u

a
li

fi
a

b
le

R
e

fe
ra

b
le

«
a

b
st

ra
c
t»

S
u

b
m

o
d

e
lE

le
m

e
n

t

B
lo

b

+

m
im

e
T

y
p

e
:

M
im

e
T

y
p

e

+

v
a

lu
e

:
B

lo
b

T
y
p

e
 [

0
..

*]

P
ro

p
e

rt
y

+

v
a

lu
e

:
P

ro
p

e
rt

y
V

a
lu

e
T

y
p

e
 [

0
..

1
]

+

v
a

lu
e

T
y
p

e
:

a
n

y
S

im
p

le
T

y
p

e
D

e
f

F
il

e

+

m
im

e
T

y
p

e
:

M
im

e
T

y
p

e

+

v
a

lu
e

:
P

a
th

T
y
p

e
 [

0
..

1
]

S
u

b
m

o
d

e
lE

le
m

e
n

tC
o

ll
e

c
ti

o
n

+

a
ll

o
w

D
u

p
li

c
a

te
s:

 b
o

o
le

a
n

 [
0

..
1

]
=

 f
a

ls
e

+

o
rd

e
re

d
:

b
o

o
le

a
n

 [
0

..
1

]
=

 f
a

ls
e

+

v
a

lu
e

:
S

u
b

m
o

d
e

lE
le

m
e

n
t

[0
..

*]

«
a

b
st

ra
c
t»

D
a

ta
E

le
m

e
n

t

R
e

fe
re

n
c

e
E

le
m

e
n

t

+

v
a

lu
e

:
R

e
fe

re
n

c
e

 [
0

..
1

]

O
p

e
ra

ti
o

n
V

a
ri

a
b

le

ki
n

d
 =

 T
y
p

e

+

v
a

lu
e

:
S

u
b

m
o

d
e

lE
le

m
e

n
t

THE METAMODEL OF THE ADMINISTRATION SHELL | 49

Figure 21 Metamodel for Data Elements and its Subtypes

c
la

s
s

 D
a

ta
 E

le
m

e
n

t
S

u
b

ty
p

e
s

B
lo

b

+

v
a

lu
e

:
B

lo
b

T
y
p

e
 [

0
..

*]

+

m
im

e
T

y
p

e
:

M
im

e
T

y
p

e

P
ro

p
e

rt
y

+

v
a

lu
e

T
y
p

e
:

a
n

y
S

im
p

le
T

y
p

e
D

e
f

+

v
a

lu
e

:
P

ro
p

e
rt

y
V

a
lu

e
T

y
p

e
 [

0
..

1
]

+

v
a

lu
e

Id
:

R
e

fe
re

n
c
e

 [
0

..
1

]

F
il

e

+

v
a

lu
e

:
P

a
th

T
y
p

e
 [

0
..

1
]

+

m
im

e
T

y
p

e
:

M
im

e
T

y
p

e

R
e

fe
re

n
c

e
E

le
m

e
n

t

+

v
a

lu
e

:
R

e
fe

re
n

c
e

 [
0

..
1

]

S
u

b
m

o
d

e
lE

le
m

e
n

t

«
a

b
st

ra
c
t»

D
a

ta
E

le
m

e
n

t

50 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.5.6 Overview of Submodel Element Types

Submodel elements include data properties as well as operations, events and other elements needed to describe a model

for an asset (see Figure 20).

In this version of the metamodel the focus is on the data properties.

3.5.7 Data Element Attributes

Data Elements include properties and file handling and reference elements, see Figure 21.

The following categories are defined for properties:

Category: Applicable to: Explanation:

CONSTANT Property

A constant property is a property with a value that does not change over

time.

In eCl@ss this kind of category has the category “Coded Value”.

PARAMETER Property

A parameter property is a property that is once set and then typically

does not change over time.

This is for example the case for configuration parameters.

VARIABLE Property
A variable property is a property that is calculated during runtime, i.e. its

value is a runtime value.

Class: DataElement <<abstract>>

Explanation: A data element is a submodel element that is not further composed out of other submodel elements.

A data element is a submodel element that has a value. The type of value differs for different subtypes of data

elements.

Inherits from: SubmodelElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

Class: Property

Explanation: A property is a data element that has a single value.

Inherits from: DataElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

value The value of the property instance.

Constraint AASd-007: if both, the value and

the valueId are present then the value needs

to be identical to the short name of the

referenced coded value in valueId.

PropertyValueType attrqu 0..1

valueId Reference to the global unqiue id of a coded

value.

Reference Attr 0..1

THE METAMODEL OF THE ADMINISTRATION SHELL | 51

A media type (also MIME type and content type) […] is a two-part Identifier for file formats and format contents

transmitted on the Internet. The Internet Assigned Numbers Authority (IANA) is the official authority for the

standardization and publication of these classifications. Media types were originally defined in Request for Comments

2045 in November 1996 as a part of MIME (Multipurpose Internet Mail Extensions) specification, for denoting type of

email message content and attachments; […] hence the name /MIME type.4

Class: Blob

Explanation: A BLOB is a data element that represents a file that is contained with its source code in the value attribute.

Inherits from: DataElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

value* The value of the BLOB instance of a blob

data element.

Note: In contrast to the file property the file

content is stored directly as value in the

Blob data element.

BlobType attr 0..*

mimeType* Mime type of the content of the BLOB.

The mime type states which file extension
the file has.

Valid values are e.g. “application/json”,

“application/xls”, ”image/jpg”

The allowed values are defined as in

RFC2046.

MimeType attr 1

Class: File

Explanation: A File is a data element that represents a file via its path description.

Inherits from: DataElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

value Path and name of the referenced file

(without file extension).

The path can be absolute or relative.

Note: The file extension is defined by

using a qualifier of type “MimeType”.

PathType attr 0..1

mimeType* Mime type of the content of the File. MimeType attr 1

For handling of supplementary external files in exchanging AAS specification in aasx format see also clause 6.4

Conventions for the Asset Administration Shell package file format (AASX). An absolute path is used in the case that

the file exists independently of the AAS. A relative path, relative to the package root should be used if the file is part of

the serialized package of the AAS.

4 Wikipedia.org, date: 2018-04-09

https://en.wikipedia.org/wiki/Media_type#cite_note-1
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority
https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/MIME
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Media_type#cite_note-RFC2045-2

52 | THE METAMODEL OF THE ADMINISTRATION SHELL

Class: ReferenceElement

Explanation: A reference element is a data element that defines a reference to another element within the same or another

AAS or a reference to an external object or entity.

Inherits from: DataElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

value Reference to any other referable element

of the same of any other AAS or a

reference to an external object or entity.

Reference aggr 0..1

For more information on references see clause 3.5.13.

3.5.8 Data Element Collection Attributes

Figure 22 Metamodel for Submodel Element Collections

Class: SubmodelElementCollection

Explanation: A submodel element collection is a set or list of submodel elements.

Inherits from: SubmodelElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

value Submodel element contained in the

collection.

SubmodelElement aggr 0..*

ordered If ordered=false then the elements in the

property collection are not ordered. If

ordered=true then the elements in the

collection are ordered.

Default = false

boolean attr 0..1

THE METAMODEL OF THE ADMINISTRATION SHELL | 53

Class: SubmodelElementCollection

Note: An ordered submodel element

collection is typically implemented as an

indexed array.

allowDuplicates If allowDuplicates=true then it is allowed

that the collection contains the same

element several times.

Default = false

boolean attr 0..1

3.5.9 Relationship Attributes

Figure 23 Metamodel of Relationship Elements

Class: RelationshipElement

Explanation: A relationship element is used to define a relationship between two referable elements.

Inherits from: SubmodelElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

first First element in the relationship taking the

role of the subject.

Referable ref* 1

second Second element in the relationship taking

the role of the object.

Referable ref* 1

3.5.10 Operation Attributes

Figure 24 Metamodel of Operations

Class: Operation

Explanation: An operation is a submodel element with input and output variables.

Inherits from: SubmodelElement

Attribute

(*=mandatory)

Explanation Type Kind Card.

in Input parameter of the operation. OperationVariable aggr 0..*

class Submodel Element - Rela...

SubmodelElement

RelationshipElement

+ first: Referable*

+ second: Referable*

class Operations including OperationVariables

SubmodelElement

Operation

+ in: OperationVariable [0..*]

+ out: OperationVariable [0..*] SubmodelElement

OperationVariable

kind = Type

+ value: SubmodelElement

54 | THE METAMODEL OF THE ADMINISTRATION SHELL

Class: Operation

out Output parameter of the operation. OperationVariable aggr 0..*

Class: OperationVariable

Explanation: An operation variable is a submodel element that is used as input or output variable of an operation.

Inherits from: SubmodelElement

Attribute (*=mandatory) Explanation Type Kind Card.

value* Describes the needed argument for an

operation via a submodel element of

kind=Type.

Constraint AASd-008: The submodel element

shall be of kind=Type.

SubmodelElement aggr 1

Note: Operations typically specify the behavior of a component in terms of procedures. Hence, operations enable
the specification of services with procedure-based interactions [32].

3.5.11 View attributes

Figure 25 Metamodel of Views

The large number of submodel elements within a submodel can be filtered by views, so that different user groups can

only see relevant elements.

Note: According clause 1.5, views are a projection of submodel elements for a given perspective. They are not
equivalent to submodels.

Class: View

Explanation: A view is a collection of referable elements w.r.t. to a specific viewpoint of one or more stakeholders.

Inherits from: HasDataSpecification; Referable; HasSemantics

Attribute

(*=mandatory)

Explanation Type Kind Card.

containedElement Referable elements that are contained in

the view.

Referable ref* 0..*

class Views

HasDataSpecification

Identifiable

AssetAdministrationShell

+ derivedFrom: AssetAdministrationShell* [0..1]

+ security: Security

HasDataSpecification

HasSemantics

Referable

View

+ containedElement: Referable* [0..*]

0..*

THE METAMODEL OF THE ADMINISTRATION SHELL | 55

3.5.12 Concept Dictionary Attributes

Figure 26 Metamodel of Concept Dictionary

Class: ConceptDictionary

Explanation: A dictionary contains elements that can be reused.

The concept dictionary contains concept descriptions.

Typically a concept description dictionary of an AAS contains only concept descriptions of elements used within

submodels of the AAS.

Inherits from: Referable

Attribute

(*=mandatory)

Explanation Type Kind Card.

conceptDescription Concept description defines a concept. ConceptDescription ref 0..*

Class: ConceptDescription

Explanation: The semantics of a property or other elements that may have a semantic description is defined by a concept

description.

The description of the concept should follow a standardized schema (realized as data specification template).

Inherits from: HasDataSpecification; Identifiable;

Attribute

(*=mandatory)

Explanation Type Kind Card.

isCaseOf Global reference to an external definition

the concept is compatible to or was

derived from.

Note: Compare to attribute is case of in

ISO 13584-32

Reference aggr 0..*

Different types of submodel elements require different attributes for describing the semantics of them. This is why a

concept description has at least one data specification template associated with it. Within this template the attributes

needed to define the semantics are defined.

See clause 3.6 for predefined data specification templates to be used.

56 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.5.13 Referencing in Asset Administration Shells

Figure 27 Metamodel for References and Keys

Note: References are used throughout the metamodel although not directly visible.

If an element is not a part of an element but just references this is denoted by an * behind the Type.

E.g. asset: Asset* means that asset: Reference with Key.type=Asset for the last Key in the Reference

Class: Reference

Explanation: Reference to either a model element of the same or another AAs or to an external entity.

A reference is an ordered list of keys, each key referencing an element. The complete list of keys may for

example be concatenated to a path that then gives unique access to an element or entity.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

key Unique reference in its name space. Key attr 0..*

Class: Key

Explanation: A key is a reference to an element by its id.

Inherits from: --

class Common - References and Keys

«enumeration»

IdentifierType

 Custom

 IRDI

 URI

«enumeration»

LocalKeyType

 IdShort

«enumeration»

KeyType

Key

+ idType: KeyType

+ local: boolean

+ type: KeyElements

+ value: string

«enumeration»

ReferableElements

 AccessPermissionRule

 Blob

 ConceptDictionary

 DataElement

 File

 Event

 Operation

 OperationVariable

 Property

 ReferenceElement

 RelationshipElement

 SubmodelElement

 SubmodelElementCollection

 View

«enumeration»

IdentifiableElements

 Asset

 AssetAdministrationShell

 ConceptDescription

 Submodel

«enumeration»

KeyElements

 GlobalReference

Reference

+ key: Key [0..*]

{If idType == IdShort

then local == true}

{If type ==

GlobalReference then

idType <> IdShort}

THE METAMODEL OF THE ADMINISTRATION SHELL | 57

Class: Key

Attribute

(*=mandatory)

Explanation Type Kind Card.

type* Denote which kind of entity is referenced.

In case type = GlobalReference then the

element is a global unique id.

In all other cases the key references a

model element of the same or of another

AAS. The name of the model element is

explicitly listed.

KeyElements attr 1

local* Denotes if the key references a model

element of the same AAS (=true) or not

(=false). In case of local = false the key

may reference a model element of another

AAS or an entity outside any AAS that has

a global unique id.

boolean attr 1

value* The key value, for example an IRDI if the

idType=IRDI.

string attr 1

idType* Type of the key value.

In case of idType = idShort local shall be

true.

In case type=GlobalReference idType

shall not be IdShort.

KeyType attr 1

The enumeration “KeyElements” is a set of the following values:

• “GlobalReference”

• All class names of referables that are not identifiable (see enumeration ReferableElements in Figure 27)

• All class names of identifiables (see enumeration IdentifiableElements in Figure 27)

3.5.14 Types

3.5.14.1 Predefined Basic Types

The predefined types used to define the metamodel use the names and the semantics of XML Schema Definition

(XSD)5. Additionally the type “langString” with the semantics as defined in the Resource Description Framework

(RDF)6 is used. “langString” is a string that can be provided in several languages, each.

5 see: https://www.w3.org/XML/Schema

6 see: https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/XML/Schema
https://www.w3.org/TR/rdf11-concepts/

58 | THE METAMODEL OF THE ADMINISTRATION SHELL

Figure 28 Built-In Types of XML Schema Definition 1.1 (XSD)

https://www.w3.org/TR/xmlschema11-2/

THE METAMODEL OF THE ADMINISTRATION SHELL | 59

3.5.14.2 Types

Table 5 Basic types used in Metamodel

Type Basic Type

PropertyValueType string

QualifierType string

Code string

anySimpleTypeDef string

BlobType byte[0..*]

PathType string

3.5.15 Templates, Inheritance, Qualifiers and Categories

On a first glance there seem to be some overlapping between the concept of data specification templates, inheritance,

qualifiers and categories. In this clause the commonalities and differences are explained and hints for good practices are

given.

In general extension of the metamodel by inheritance is allowed. As an alternative also templates might be used.

• Templates should only be used if different instances of the class follow different schemas and the templates for

the schemas are not known at design time. Templates might also be used if the overall metamodel is not yet

stable enough or a tool does support templates but not (yet) the complete metamodel.

• However: when using non-standardized proprietary data specification templates interoperability cannot be

ensured and thus should be avoided whenever possible.

• In case all instances of a class follow the same schema then inheritance and/or categories should be used.

• Categories can be used if all instances of a class follow the same schema but have different constraints

depending on its category. Such a constraint might specify that an optional attribute is mandatory for this

category (like for example the unit that is mandatory for properties representing physical values). Realizing the

same via inheritance would lead to multiple inheritance what is to be omitted.

• Qualifiers are used if the semantics of the element is the same independent of its qualifiers. It is only the quality

or the meaning of the value for the element that differs.

60 | THE METAMODEL OF THE ADMINISTRATION SHELL

3.6 Predefined Data Specification templates

3.6.1 Concept of Data Specification Templates

Figure 29 Concept of Data Specification Templates

Note: The Data Specification Templates do not belong to the metamodel of the Asset Administration Shell. In
serializations that choose specific templates the corresponding data specification content may be directly
incorporated.

It is required that a data specification template has a global unique id so that is can be referenced via

HasDataSpecification.

A template consists of the DataSpecificationContent containing the additional attributes to be added to the element

instance that references the data specification template and meta information about the template itself (this is why

exemplary DataSpecification inherits from Identifiable). In UML these are two separated classes.

3.6.2 Predefined Templates for Property Descriptions

Figure 30 Data Specification Template for defining Property Descriptions conformant to IEC 61360

For the meaning of the attributes of the IEC61360 data specification template please refer to IEC 61360 and/or eCl@ss.

We recommend to refer to this data specification template via the id “www.admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360” (in hasDataSpecification).

class Data Specifications (T...

Identifiable

«abstract»

DataSpecification

«abstract»

DataSpecificationContent

1

THE METAMODEL OF THE ADMINISTRATION SHELL | 61

See Figure 31 for how data specification templates are related to concept descriptions (showing all inherited attributes

as well). In a similar way templates for other elements in the information model can be defined and used.

Figure 31 Overview Concept Descriptions and Data Specification Templates

62 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

4 Mappings to data formats to share I4.0-

compliant information

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 63

4.1 General

It should be possible to share I4.0-compliant information between different systems throughout the area covered by the

entire RAMI4.0 model [1] [2]. OPC UA has been targeted as a format for information models in the domain of

production operations, but there is a need for other formats for the other areas and the interrelationships between them.

This document describes the AssetAdministration Shell together with its submodels in different data formats7:

Table 6 Distinction of different data format for the AAS

Data format Purpose / motivation

OPC UA Information

models

Access to all information of the administration data and sharing of live data within production

operations. Access for higher-level factory systems to this information.

AutomationML
Sharing of type and instance information about assets, particularly during engineering. Transfer

of this information into the operational phase (cf. OPC UA and the corresponding mapping)

XML, JSON Serialisation of this information for the purpose of technical communication between phases.

RDF Mapping of this information to enable full use of the advantages of semantic technologies.

Figure 32 Graphic View on Exchange Data Formats for the Asset Administration Shell8

The specifications of the preceding clause are now specifically transferred to the individual data exchange formats.

4.2 General Rules

7The abbreviated use of the word “data formats” includes the use of conceptual advantages such as information models,

schemes, transmission protocols, etc.

8 Only data formats considered in this document so far are mentioned in the figure.

64 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

In the following we distinguish between global and model keys. They are defined as follows:

• A global key is a key with idType <> IdShort. A global key can be local (local = true) if it references an element

within the same AAS, for example a ConceptDescription or another Submodel.

• A model key is a key with type <> GlobalReference, i.e. it references a model element within the same AAS

(local = true) or within another AAS (local=false).

• A similar distinction is done for references:

• A model reference is a reference key chain in which the last key is a model key.

• A global reference is a reference key chain in which the last key is a global key with type = GlobalReference.

• An external global reference is a global reference for which the first key in the reference key chain is not local

(local = false).

• A local global reference is a global reference for which the first key in the reference key chain is local (local =

true).

The following rules hold and ensure that potential cyclical References can be serialized:

• In a Reference key chain, a key with local “true” is followed either by no key or a key with "local" is "true".

• In a Reference key chain, a key with local “false” is followed either by no key or a key with "local" is "true"

4.3 Unified example

The following example is used to demonstrate the main features of the data formats as explained in the following

clauses for different data formats. Intention is to motivate the equivalency of information in different representations.

The examples themselves can be found in the annex.

It shows an AAS with two properties: the actual rotation speed (idShort = “rotationSpeed”), a measurement value

(category=VARIABLE) as well as the maximum rotation speed “NMax” (category=PARAMETER). The AAS

represents a controller with short id “3S7PLFDRS35”.

Up to know there is no property defined within eCl@ss for the actual rotation speed. Therefore a corresponding concept

description (with idShort=”N”) is added to the local dictionary of the AAS. It gets the global identifier

“id=www.festo.com/dic/08111234” that is referenced via semanticId in the property “rotationSpeed”.

For the maximum rotation speed eCl@ss provides a semantic definition with global identifier “0173-1#02-

BAA120#007”. A copy of the entry is created within the local dictionary. The id of the copy is the same as in eCl@ss.

The physical unit of the rotation speed properties and concept description is 1/min, denoted by a globally unique IRDI

“0173-1#05-AAA650#002” for 1/min as defined by eCl@ss.

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 65

Figure 33 Example rotation speed for serialization to data formats

c
la

s
s

 E
x

a
m

p
le

 R
o

ta
ti

o
n

 S
p

e
e

d
 i

n
c

l.
 V

ie
w

s

«
A

ss
e

tA
d

m
in

is
tr

a
ti

o
n

S
h

e
ll

»

«
S

u
b

m
o

d
e

l»

1
2

3
4

5
6

7
9

-
se

m
a

n
ti

c
Id

 =
 <

..
.>

8
7

6
5

4
5

3
4

6

-
ki

n
d

 =
 I

n
st

a
n

c
e

«
C

o
n

c
e

p
tD

ic
ti

o
n

a
ry

»

S
a

m
p

le
D

ic

«
A

ss
e

t»

3
S

7
P

L
F

D
R

S
3

5

-
ki

n
d

 =
 I

n
st

a
n

c
e

-
d

e
sc

ri
p

ti
o

n
 (

E
N

)
=

 F
e

st
o

 c
o

n
tr

o
ll

e
..

.

id
=

w
w

w
.a

d
m

in
-s

h
e
ll.

io
/a

a
s-

sa
m

p
le

/1
.0

id
=

h
tt

p
:/

/p
k
.f
e
st

o
.c

o
m

/3
S
7
P

L
F
D

R
S
3
5

id
=

h
tt

p
:/

/w
w

w
.z

v
e
i.d

e
/d

e
m

o
/s

u

b
m

o
d

e
l/

1
2
3
4
5
6
7
9

«
P

ro
p

e
rt

y
'»

ro
ta

ti
o

n
S

p
e

e
d

-
c
a

te
g

o
ry

 =
 V

A
R

IA
B

L
E

«
C

o
n

c
e

p
tD

e
sc

ri
p

ti
o

n
»

N
M

a
x

-
p

re
fe

rr
e

d
N

a
m

e
 (

E
N

)
=

 M
a

x
.

ro
ta

ti
o

n
 s

p
e

e
d

-
p

re
fe

rr
e

d
N

a
m

e
 (

D
E

)
=

 m
a

x
im

a
le

 D
re

h
z
a

h
l

-
u

n
it

 =
 1

/m
in

-
u

n
it

Id
 =

 0
1

7
3

-1
#

0
5

-A
A

A
6

5
0

#
0

0
2

-
v
a

lu
e

F
o

rm
a

t
=

 N
R

1
..

5

id
=

0
1
7
3
-1

#
0
2
-B

A
A

1
2
0
#

0
0
7

«
C

o
n

c
e

p
tD

e
sc

ri
p

ti
o

n
»

N

-
p

re
fe

rr
e

d
N

a
m

e
 (

E
N

)
=

 R
o

ta
ti

o
n

 s
p

e
e

d

-
p

re
fe

rr
e

d
N

a
m

e
 (

D
E

)
=

 D
re

h
z
a

h
l

-
u

n
it

 =
 1

/m
in

-
u

n
it

Id
 =

 0
1

7
3

-1
#

0
5

-A
A

A
6

5
0

#
0

0
2

-
v
a

lu
e

F
o

rm
a

t
=

 N
R

1
..

5

id
=

w
w

w
.f
e
st

o
.c

o
m

/d
ic

/0
8
1
1
1
2
3
4

L
e
g

e
n

d
:

-
C

la
ss

 n
a
m

e

c
o

rr
e
sp

o
n

d
s

to
 i
d

S
h

o
rt

.

-
C

o
m

m
e
n

ts
 "

id
=

"

re
p

re
se

n
t

th
e
 g

lo
b

a
l

id
e
n

ti
fi
e
rs

.

«
P

ro
p

e
rt

y
'»

N
M

a
x

-
c
a

te
g

o
ry

 =
 P

A
R

A
M

E
T

E
R

-
se

m
a

n
ti

c
Id

 =
 0

1
7

3
-1

#
0

2
-B

A
A

1
2

0
#

0
0

7

-
v
a

lu
e

 =
 2

0
0

0

«
V

ie
w

'»

s
a

m
p

le
V

ie
w

-
d

e
sc

ri
p

ti
o

n
 (

E
N

)
=

 S
a

fe
ty

 R
e

le
v
a

n
t

su
b

m
o

d
e

lE
le

m
e

n
ts

:2

c
o

n
ta

in
e

d
E

le
m

e
n

ts
:1

«
re

f»

+
su

b
m

o
d

e
lE

le
m

e
n

ts
:1

c
o

n
c
e

p
tD

e
sc

ri
p

ti
o

n
s:

2

«
re

f»

«
re

f»

+
su

b
m

o
d

e
ls

:1

v
ie

w
s:

1

d
ic

ti
o

n
a

ri
e

s:
1

a
ss

e
t«

re
f»

c
o

n
c
e

p
tD

e
sc

ri
p

ti
o

n
s:

1

«
re

f»

66 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

4.4 XML

4.4.1 General

In the following clauses an overview of the main concepts of the AssetAdministration Shell XML serialization is

presented. For import and export scenarios the metamodel of an AssetAdministration Shell needs to be serialized. A

serialization format is XML. The information is divided in three parts. The first part discusses the rules, in the second

part are examples for some specific rules and in the third part the schema and a complete example is shown in the

annex.

4.4.2 Introduction

eXtensible Markup Language (XML9) is very well suited to deriving information from an IT system, perhaps to process

it manually, and then to feed it into another IT system. It therefore meets the needs of the information sharing scenario

defined in Section 0. XML provides for the possibilities of scheme definitions which can be used to syntactically

validate the represented information in each step. For this reason, this document provides basic scheme definitions to

permit a validation of information which is shared.

The XML definitions are divided into two different files:

• IEC61360 datatype definition: iec61360.xsd

• Core definitions for the AssetAdministration Shell and its export container: aas.xsd

Subsequently, an example in XML is provided.

4.4.3 Rules

The main concepts of the XML schema and the resulting XML serialization are explained by the following rules. Rules

1 through 6 are general rules, while rules 7 through 11 are specific to References.

(1) XSD global Types are used for modeling

For reusability XSD global types will be used for modeling. There will be a naming convention

<informationModelName>+’_t’

(2) If present, names are taken from the information model.

For comprehensibility reasons the XML key names should be the same as the representing Element in the

metamodel.

(3) All identifiables have an aggregation on root level.

The identifiables are AssetAdministrationShells, Assets, Submodels, ConceptDescriptions. To reduce

redundancy instances, they are located exclusively in the top-level aggregation.

(4) Repeating elements and their types will get the same names of their instances in plural.

If the element has a cardinality of n>1 a parent element will be used with the name of the name of the element

in plural. For example, each element in the aggregation assets needs to be an asset.

(5) Identifiables which are not in the top-level aggregations are only references to the corresponding

instances in one of the top-level aggregations.

This rule completes the concept of rule 3. There should be no redundant identifiable in the serialized

metamodel.

(6) For elements with type langString an aggregation element is added. For the single element a language

tag “lang” is added.

For internationalization purposes this rule is necessary.

(7) The attributes of a key in a reference except for the value itself are realized as XML attributes.

(8) Data Specification Templates are directly added to the Concept Description because up to now only

property descriptions are supported.

9 see: https://de.wikipedia.org/wiki/Extensible_Markup_Language

https://de.wikipedia.org/wiki/Extensible_Markup_Language

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 67

Additionally, a new element EmbeddedDataSpecification is introduced that has two attributes: one for the

global reference to the data specification identifier and one for the content of the data specification.

4.4.4 Example for top-level structures

One serialization describes one asset Administration Shell environment that is a collection of Administration Shells.

The root element of the AssetAdministration Shell environment has 4 aggregations. For each identifiable class, one

aggregation is featured, as required by rule 3.

Figure 34 Top level structure of an AssetAdministration Shell environment mapped to XML Schema

Note: XSD structuring was done with Eclipse tool chain

The resulting XML is the minimal XML:

Table 7 Minimal XML for top level structure

<?xml version="1.0" encoding="UTF-8"?>

<aas:aasenv xmlns:aas="http://www.admin-shell.io/aas/1/0" 

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 xsi:schemaLocation="http://www.admin-shell.io/aas/1/0 AAS.xsd ">

 <aas:assetAdministrationShells>

 </aas:assetAdministrationShells>

 <aas:assets>

 </aas:assets>

 <aas:submodels>

 </aas:submodels>

 <aas:conceptDescriptions>

 </aas:conceptDescriptions>

</aas:aaenv>

Note:  designates line-wrap for purpose of layout

Source: Plattform Industrie 4.0

68 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

4.4.5 XSD Model Groups

There are a number of attribute groups in the UML model – i.e. identifiable or hasSemantics. These groups are

modelled as XSD model groups so they could be reused as anonymous groups in different places.

Figure 35 XSD Model Groups

This is realized in the according XSD as follows:

Table 8 Using XSD Model Groups

<complexType name="assetAdministrationShell_t">

 <sequence>

 <group ref="aas:identifiable"></group>

 <group ref="aas:hasDataSpecification"></group>

 <element name="derivedFrom" type="aas:reference_t"/>

 <element name="assetRef" type="aas:reference_t"/>

 <element name="submodelRefs" type="aas:submodelsRef_t"/>

 <element name="views" type="aas:viewsRef_t">

 <element name="conceptDictionaries"type="aas:conceptDictionaries_t"/>

 </sequence>

</complexType>

Note: due to XSD group mechanism, hasDataSpecification maps to an element of embeddedDataSpecification_t
and identifiable maps to multiple elements in Figure 35.

Source: Plattform Industrie 4.0

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 69

4.4.6 Keys and References

Keys and References (see 3.5.13) are mapped on the same XML schema construct. Some of the attributes have

enumerations defined – these are mapped on string constraints.

Figure 36 Keys and References

4.4.7 Asset Administration Shell Mapping

Asset Administration Shells are mapped using the following XML Schema construct – it consists of a set of meta data

parameters and mostly links to other parts of the XML document or to external entities (based on keys and references).

Source: Plattform Industrie 4.0

70 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

Figure 37 Overview on mapping and meta-data

4.4.8 ConceptDescriptions and EmbeddedDataSpecifications Mapping

As described above, the definition of a concept comprises of an according reference and a content, which is realized by

a data specification.

Note: EmbeddedDataSpecification was named “ConceptDefinition” in a former version of the metamodel. The
figures are not yet updated.

Figure 38 Concept description in XML in general

Source: Plattform Industrie 4.0

Source: Plattform Industrie 4.0

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 71

The data specification can be e.g. along of an IEC 61360 property:

Figure 39 Data specification via IEC 61360 property attributes

Full XSD and example XML can be found in Annex D.

Source: Plattform Industrie 4.0

72 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

4.5 JSON

4.5.1 General

In the following clauses an overview of the main concepts of the AssetAdministration Shell JSON serialization is

presented. For import and export scenarios the metamodel of an AssetAdministration Shell needs to be serialized. A

serialization format is JSON10 (JavaScript Object Notation). The information is divided in three parts. The first part

discusses the rules, in the second part are examples for some specific rules and in the third part the schema and a

complete example is shown in the annex.

The publicly funded project BaSys 4.0 provides an open source implementation of the Asset Administration Shell and

its JSON serialization by the end of 2018.11

4.5.2 Rules

The main concepts of the JSON serialization are explained by the following 11 rules. Rules 1 through 6 are general

rules, while rules 7 through 11 are specific to References.

(1) If present, names are taken from the information model.

For comprehensibility reasons the JSON key names should be the same as the representing Element in the

metamodel.

(2) Each object has an additional attribute “modelType” with the name of the corresponding object class

as value

This rule is needed for deserialization reasons.

(3) All identifiables have an aggregation on root level.

The identifiables are AssetAdministrationShells, Assets, Submodels and ConceptDescriptions. To reduce

redundancy instances, they are located exclusively in the top-level aggregation.

(4) Aggregation Names are the names of their instances in plural.

If the value of a key value pair is a JSON array the key name needs to be the name of the instances in this

JSON array in plural. For example, each object in the aggregation assets needs to be an asset.

(5) Identifiables which are not in the top-level aggregations are only references to the corresponding

instances in one of the top-level aggregations.

This rule completes the concept of rule 3. There should be no redundant identifiable in the serialized

metamodel.

(6) The (multi-language) Description in the metamodel is always an aggregation of descriptions in the

serialized JSON.

For internationalization purposes this rule is necessary.

(7) All ordered Collections including Keys have an index. The first object in the Collection has the index 0.

Because the Reference key chain is an ordered list the index attribute is needed.

(8) Data Specification Templates are directly added to the Concept Description because up to now only

property descriptions are supported.

Additionally, a new element EmbeddedDataSpecification is introduced that has two attributes: one for the

global reference to the data specification identifier and one for the content of the data specification.

4.5.3 Example for top-level structures

One serialization describes one asset Administration Shell environment, that is, a collection of Administration Shells.

The root element of the AssetAdministration Shell environment has 4 aggregations. For each identifiable class, one

aggregation is features, as required by rule 3.

10 see: https://tools.ietf.org/html/rfc8259 or https://www.ecma-international.org/publications/standards/Ecma-404.htm

11 BaSys 4.0 SDK open source implementation see: https://projects.eclipse.org/projects/technology.basyx

https://tools.ietf.org/html/rfc8259
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://projects.eclipse.org/projects/technology.basyx

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 73

Figure 40 Top level structure of an AssetAdministration Shell environment mapped to JSON

The resulting JSON is the minimal valid JSON:

Table 9 Minimal JSON for top level structure

{

 "assetAdministrationShells":[],

 "assets":[],

 "submodels":[],

 "conceptDescriptions":[]

}

4.5.4 Examples for References to Identifiables

As required by rule 5, Identifiables are only allowed to be located in the top-level aggregations. In deeper parts of the

structure only References to the corresponding Identifiable take place.

In the AssetAdministration Shell AAS1, the submodel S1 is only a Reference to the Submodel S1 instance in the top

level Submodels aggregation.

Figure 41 Submodel reference in AssetAdministrationShell for JSON

Source: Plattform Industrie 4.0

Source: Plattform Industrie 4.0

74 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

This results in the following exemplary JSON:

Table 10 Exemplary minimal JSON for References

{

 "assetAdministrationShells":[

 {

 "modelType": "AssetAdministrationShell",

 "submodels":[

 {

 "keys":[

 {

 "keyType":"URI",

 "local":true,

 "type":"Submodel",

 "value": "http://env.com/submodels/S1",

 "index":0

 }

]

 }

],

 …

 }

],

 "assets":[],

 "submodels":[

 {

 "modelType":"Submodel",

 "identification":{

 "id": "http://env.com/submodels/S1",

 "idType":"URI"

 },

 "idShort":"S1",

 "submodelElements":[],

 …

 }

],

 "conceptDescriptions":[]

}

4.5.5 Examples for Descriptions

As described in rule 6, a description in the serialization is an array of descriptions from the metamodel.

Table 11 Exemplary minimal JSON for top level structure

"descriptions":[

 {

 "text":"Beispiel Beschreibung",

 "language":"DE"

 },

 {

 "text":"Sample Description",

 "language":"EN"

 }

]

4.5.6 Examples for ReferenceElement

A ReferenceElement has a Reference as value. This Reference has an aggregation of keys which represents a key chain.

The resolved key chain points to an element. In this example the ReferenceElement’s value points to a property of

another submodel in another Asset Administration Shell environment. The first key is a global key with “local”-

attribute set to false, i.e. the reference is not part of the own environment. The second key is a model key which is used

to define the corresponding property in the other environment by its IdShort. It is best practice to use the shortest key

chain if there are multiple options.

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 75

Figure 42 Usage of ReferenceElement in JSON

This results in an exemplary JSON as such:

Table 12 Exemplary ReferenceElement in JSON

{

 "keys":[

 {

 "keyType":"URI",

 "local":false,

 "type":"Submodel",

 "value":"http://admin-shell.io/submodels/Temperature",

 "index":0

 },

 {

 "keyType":"IdShort",

 "local":true,

 "type":"Property",

 "value":"NMax",

 "index":1

 }

]

}

Source: Plattform Industrie 4.0

76 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

4.5.7 Examples for GlobalReference

Sometimes it is useful to refer to another standard or something that is not provided by the own AssetAdministration

Shell environment. In this example the semantics of a Property refers to eCl@ss.

Figure 43 Usage of GlobalReference in JSON

This results in an exemplary JSON as such:

Table 13 Exemplary GlobalReference in JSON

{

 "keys":[

 {

 "keyType":"IRDI",

 "local": false,

 "type":"GlobalReference",

 "value":"0173-1#02-AAC962#006",

 "index":0

 }

]

}

Source: Plattform Industrie 4.0

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 77

4.5.8 Example for a kind = "type" Reference

A semantic description can either be something external or an instance with kind =”type”. In this example the Property

P2 uses P1 as a template. P1 has kind =”type” and P2 kind =”instance”.

Note: typically, types are assumed to be specified in another Asset Administration Shell as the instances. Here, the
depicted situation is simplified for layout reasons.

Figure 44 Exemplary type Reference in JSON

This results in an exemplary JSON as such:

Table 14 Exemplary type Reference in JSON

{

 "keys":[

 {

 "keyType":"URI",

 "local":true,

 "type":"Submodel",

 "value":"http://aasenv1.com/submodel/S1",

 "index":0

 },

 {

 "keyType":"IdShort",

 "local":true,

 "type":"Property",

 "value":"P1",

 "index":1

 }

]

}

Source: Plattform Industrie 4.0

78 | MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION

4.6 RDF

As of November 2018, the mapping towards RDF is under discussion. The results will be made available as soon as

they are finalized.

4.7 OPC UA

The works of the mapping to the OPC Unified Architecture are currently carried out in a joint working group12 between

OPC Foundation, ZVEI and VDMA. The results will be made available as soon as they are finalized.

4.8 AutomationML

As of November 2018, the mapping towards AutomationML are currently work in progress. The results will be made

available as soon as they are finalized.

12 see: https://opcfoundation.org/collaboration/i4aas/

https://opcfoundation.org/collaboration/i4aas/

MAPPINGS TO DATA FORMATS TO SHARE I4.0-COMPLIANT INFORMATION | 79

80 | ATTRIBUTE BASED & ROLE BASED ACCESS

5 Attribute Based & Role Based Access

ATTRIBUTE BASED & ROLE BASED ACCESS | 81

5.1 Passing Permissions for Access

When having a look at the leading picture (Figure 1 in clause 2.2) also security aspects have to be considered when

transferring information from one value chain partner to the next.

When admin shell content is passed from one partner to the next, the following steps need to be done, here shown for

the example that the supplier passes on content to the integrator:

• Step A1-A2: The supplier makes a choice which data is to be passed on (see clause 5.2), and thus determines the

content of the AASX package (see clause 6).

• Step A2-A3: The AASX package is transferred to the integrator.

• Step A3-A4: The integrator receives the package and imports the content into his security domain. During this

step, the integrator has to establish access rights according to the requirements in his own security domain.

This demonstrates that access rights are independent between the two security domains.

The admin shell uses attribute based access control (ABAC), a role can be considered as one attribute in this context;

other attributes might be time-of-day, originating address and others.

Two boundary conditions require the passing on of access permissions between partners:

(a) Access permissions to information elements of an AAS must be established in each security domain.

(b) One partner must be able to pass a suggestion which access permissions should be established for the asset that

is described in the AAS.

An example for the second requirement: a robot manufacturer suggests that for the robot the following roles should be

established: machine setter, operator and a maintenance role. He also suggests permissions for these roles, e.g. an

installer does have write-access to the program of the robot, but an operator does not.

The above example motivates, that the semantics of access permission rules and their exact definitions need to be

passed from one security domain to the other.

The passing on of the semantics of attribute based access is implemented by following means:

• Definition of access permissions: The detailed access permission (e.g. read, write, delete, create, invoke method

etc.) are defined in a domain specific submodel (see defaultPermissions and selectablePermissions in clause

5.4.5).

• Definition of the access permission rules, based on the defined access permissions. These are defined as part of

access control (see clause 5.4.6).

• Association of access permission rules to each information element (object) of the AAS. This means is realized

by the information structure of the AAS, itself (see PermissionsPerObject in clause 5.4.6).

In [19] examples and more background information on attribute access control and access control in general can be

found.

5.1.1 Effective Access based on Access Permission Rules

Effective access permissions are determined based on the access permission rules.

Each information element (object) in the AAS shall have rules that defines its access permissions for each subject. The

subject is assumed to be already authenticated.

If an information element does not have these rules, it will automatically use the table for the element where it is

included (“inheritance from above"). The most upper object is the AAS itself, i.e. the AAS is the starting point for the

inheritance.

As indicated before, subject identification, rule definitions and also permissions could be different for the receiving

security domain.

When the receiving party establishes access permissions during step A3-A4, it must establish the passed-on access

definitions (permissions and access permission rules) to the existing definitions in its security domain.

82 | ATTRIBUTE BASED & ROLE BASED ACCESS

It also has to map the received access permission rule per info element to existing permission mechanisms in its security

domain.

5.2 Filtering of Information in Export and Import

When exchanging information from partner A to partner B there are two use cases:

• The producer of information does not want to submit the complete information but only parts of it. The

information submitted might vary depending on the specific consumer the information is submitted to. I.e. a

filtering mechanism is needed that allows to individually shape the information for the specific consumer.

• The consumer of information does not want to include all information provided by the producer of information

in his own process, i.e. he wants to filter only the relevant information.

Figure 45 Example Filtering for Export and Import

As an example, assume that the producer is submitting the complete order data. However, the consumer (in this case the

machine builders) is filtering the information (1) and is only importing the information relevant to him. For the

functionality both are filtering: the producer is filtering what he submits to the consumer (2) and the consumer again is

not using all functionality but is filtering again which functionality shall be used in his environment. The same is

possible between machine builders and operator.

Note: In the use case considered in this document, the exchange of information via sharing of xml files etc. the
information that is not intended to be submitted needs to be extracted from the corresponding xml files before
delivery or before import, respectively. Role or attributes access control do not fit here. The corresponding
access policies might help filtering the corresponding information but they cannot be submitted as part of the
corresponding file exchanged.

Table 15 shows an example when using the defined xml format as defined in this document. In the example the German

translation shall not be submitted, only English language is provided for partner B.

ATTRIBUTE BASED & ROLE BASED ACCESS | 83

Table 15 Example Filtering of Information in XML

5.3 Overview Metamodel Asset Administration Shell for Security

The security attributes are a mandatory part of any Administration Shell.

The security attributes describe:

• Access Control Policy Points including definition of access permission rules

• Trust anchors

In this document mainly the aspect of access permission is dealt with. The underlying concept is the concept of attribute

based access control (ABAC) as described in [22].

84 | ATTRIBUTE BASED & ROLE BASED ACCESS

Figure 46 Attribute Based Access Control [22]

Note: Attribute in the context of ABAC is different from attributes of elements as defined in the metamodel.

The overall concept is depicted in Figure 46: A subject is requesting access to an object (1). In the context of an AAS an

object typically is a submodel or a property or any other submodel element connected to the asset. The implemented

access control mechanism of the AAS evaluates the access permission rules (2a) that include constraints that need to be

fulfilled w.r.t. the subject attributes (2b), the object attributes (2c) and the environment conditions (2d).

In Figure 47 an overview of the information model of the AAS w.r.t. security is given. The focus is on access control.

An object in the context of ABAC corresponds typically to a submodel or to a submodel element. The object attributes

again are modelled as submodel elements.

Subject Attributes need to be accessed either via an external policy information point or they are defined as properties

within a special submodel of the AAS. A typical subject attribute is its role. The role is the only subject attribute defined

in case of role based access control.

Optionally, environment conditions can be defined. In role based access control no environment conditions are defined.

Environment conditions can be expressed via formula constraints. To be able to do so the values needed should be

defined as property or reference to data within a submodel of the AAS.

ATTRIBUTE BASED & ROLE BASED ACCESS | 85

Figure 47 Metamodel Overview Access Control of AAS

Via access permission rules it is defined which subject is allowed to access which objects13 within the AAS. It is

assumed that the subject is already authenticated. Objects can be any referable elements, i.e. they include submodels,

assets, concept descriptions, views etc. More general it can be specified whether an authenticated subject is allowed or

denied to access an object a.s.o. “Access” might be one of the specified permissions on an element of the AAS. Which

permissions are selectable is not defined by the metamodel of the AAS. The selectable permissions are defined via a

submodel (selectablePermissions). The same holds for the subject attributes (selectableSubjectAttributes). The default

subject attributes and default permissions are used if they are not overwritten by the owner of the AAS. As for

permissions the used authenticated subject attributes are defined in submodel selectableSubjectAttributes.

Via formula constraints the access rights might be further constrained. For example a formula might specify that the

role “maintenance engineer” (to be more precise: an authenticated subject with subject attribute “role = ‘maintenance

engineer’”) is only allowed to write configuration parameters if the machine (the asset) is not running. See Figure 15 in

clause 3.5.2.6 for a formal expression of this access rule based on the property “Status”.

Object Attributes are handled in a different way. It is assumed that any property of the object in focus can additionally

take over the role of an object attribute. Therefore there is no special submodel for default or selectable object attributes.

Also the more traditional role based access control can be realized for an AAS: in this case there are no constraints (=

environment attributes) defined for the access control rules. For a subject only one subject attribute needs to be defined:

its role. For the object no additional object attributes need to be defined.

13 The term “object” is used because it is more generic and in future also other objects like for example attributes of

classes may be included besides elements.

class Ov erv iew Attribute Based Access Control (ABAC)

Qualifiable

Referable

AccessPermissionRule

+ targetSubjectAttributes: SubjectAttributes [1..*]

+ permissionsPerObject: PermissionsPerObject [0..*]

AccessControl

+ selectableSubjectAttributes: Submodel*

+ defaultSubjectAttributes: Submodel*

+ selectablePermissions: Submodel*

+ defaultPermissions: Submodel*

+ selectableEnvironmentAttributes: Submodel [0..1]

+ defaultEnvironmentAttributes: Submodel*

+ accessPermissionRule: AccessPermissionRule [0..*]

SubjectAttributes

+ subjectAttribute: Property [1..*]

PermissionsPerObject

+ object: Referable*

+ targetObjectAttributes: ObjectAttributes [0..1]

+ permission: Permission [0..*]

Permission

+ permission: Property*

+ kindOfPermission: PermissionKind

«enumeration»

PermissionKind

 allow

 deny

 not applicable

 undefined

permission for example:

allow read, write, delete

as defined in submodel

selectablePermissions

in AccessControl

Constraint

Formula

+ dependsOn: Reference* [0..*]

PolicyAdministrationPoint

+ localAccessControl: AccessControl [0..1]

+ externalAccessControl: Endpoint [0..1]

authenticated subject attributes

(kind=Type) are defined in

submodel

selectableSubjectAttributes in

AccessControl.

An authenticated subject is

described via its attributes like

OPC UA role, qualification (in case

of human subjects),

HasDataSpecification

Identifiable

AssetAdministrationShell

+ security: Security

+ derivedFrom: AssetAdministrationShell* [0..1]

security

includes

Environment Conditions

are specified in formulas

(inherited via Qualifiable) ObjectAttributes

+ objectAttribute: Property [1..*]

86 | ATTRIBUTE BASED & ROLE BASED ACCESS

For more details on attribute based access control including examples how to apply the metamodel as defined in this

document see [19].

The classes and their attributes are defined in the following clause 5.4.

Figure 48 gives an overview of all elements defined for security issues in the metamodel.

Figure 48 Security Overview Packages

5.4 Metamodel Specification Details: Designators

5.4.1 Introduction

In this clause the classes of the metamodel related to security are specified in detail. It is an extension of the metamodel

as described in clause 3.5.

For understanding the extension the basics and common abstract classes need to be understood (see especially clause

3.5.2, clause 3.5.13 and clause 3.5.14).

5.4.2 Common

Endpoint is not yet specified in detail in the current metamodel. It is just an abstract class.

ATTRIBUTE BASED & ROLE BASED ACCESS | 87

5.4.3 Security Attributes

Figure 49 Metamodel for Security Attributes of AAS

Class: Security

Explanation: Container for security relevant information of the AAS.

Inherits from:

Attribute (*=mandatory) Explanation Type Kind Card.

accessControlPolicyPoints* Access control policy points of the

AAS.

AccessControlPolicyPoints aggr 1

trustAnchor Trust anchor of AAS, typically

certificates.

Certificate aggr 0..*

In general it has to be considered how to enable the first configuration of the AAS w.r.t. security. This would include

setting the authorization provider endpoint etc.

There is not only one trust anchor per AAS because certificates can be overwritten if an AAS is taken over by a new

owner. The new owner adds a new certificate. Nevertheless the complete set of certificates needs to be available.

Certificate is not yet further defined.

5.4.4 Access Control Policy Point Attributes

Figure 50 Metamodel for Access Control

class Security

HasDataSpecification

Identifiable

AssetAdministrationShell

+ security: Security

+ derivedFrom: AssetAdministrationShell* [0..1]

Security

+ accessControlPolicyPoints: AccessControlPolicyPoints

+ trustAnchor: Certificate [0..*]

class Security - Access Control Policy Points

AccessControlPolicyPoints

+ policyAdministrationPoint: PolicyAdministrationPoint

+ policyDecisionPoint: PolicyDecisionPoint

+ policyEnforcementPoint: PolicyEnforcementPoint

+ policyInformationPoints: PolicyInformationPoints [0..1]

PolicyAdministrationPoint

+ localAccessControl: AccessControl [0..1]

+ externalAccessControl: Endpoint [0..1]

PolicyInformationPoints

+ internalInformationPoint: Submodel* [0..*]

+ externalInformationPoint: Endpoint [0..*]

88 | ATTRIBUTE BASED & ROLE BASED ACCESS

Class: AccessControlPolicyPoints

Explanation: Container for access control policy points.

Inherits from:

Attribute (*=mandatory) Explanation Type Kind Card.

policyAdministrationPoint* The access control administration policy point of

the AAS.

PolicyAdministrationPoint aggr 1

policyDecisionPoint* The access control policy decision point of the

AAS.

PolicyDecisionPoint aggr 1

policyEnforcementPoint* The access control policy enforcement point of

the AAS.

PolicyEnforcementPoint aggr 1

policyInformationPoints The access control policy information points of

the AAS.

PolicyInformationPoints aggr 0..1

The definition of policy decision point (PDP) is taken from [22]. The PIP computes access decisions by evaluating the

applicable decision points and meta policies. One of the main functions of the policy decision point is to mediate or

deconflict decision policies according to meta policies. Either the decision taking is done within the AAS. Then, the

AAS is autonomous and independent from an external access control system. Or the decision taking is done outside the

AAS. Then, the AAS needs to be able to access this external endpoint for decision taking.

Class: PolicyAdministrationPoint

Explanation: Definition of a security administration point (PDP).

Inherits from:

Attribute (*=mandatory) Explanation Type Kind Card.

localAccessControl The policy decision point of access control as realized by the AAS

itself.

Constraint AASd-009: Either there is an external policy

administration point endpoint defined or the AAS has its own

access control.

AccessControl aggr 0..1

externalAccessControl Endpoint to an external access control defining a policy

administration point to be used by the AAS.

Endpoint ref* 0..1

Class: PolicyInformationPoints

Explanation: Defines the security policy information points (PIP).

Serves as the retrieval source of attributes, or the data required for policy evaluation to provide the

information needed by the policy decision point to make the decisions.

Inherits from:

Attribute (*=mandatory) Explanation Type Kind Card.

externalInformationPoint Endpoints to external available information points taking into

consideration for access control for the AAS.

Endpoint aggr 0..*

internalInformationPoint References to submodels defining information used by

security access permission rules.

Submodel ref* 0..*

ATTRIBUTE BASED & ROLE BASED ACCESS | 89

The definition of policy information point (PIP) is taken from [22]. The difference between external and internal

information points is whether the AAS needs access via an endpoint to an externa source of information or whether the

AAS stores the needed information itself. There might also be external and internal information points for an AAS to be

considered for decision taking.

5.4.5 Local Access Control Attributes

Figure 51 Metamodel for Access Control

Class: AccessControl

Explanation: Access Control defines the local access control policy administration point.

Access Control has the major task to define the access permission rules.

Inherits from:

Attribute (*=mandatory) Explanation Type Kind Card.

accessPermissionRule Access permission rules of the AAS describing the

rights assigned to (already authenticated) subjects to

access elements of the AAS.

AccessPermissi

onRule

aggr 0..*

selectableSubjectAttributes* Reference to a submodel defining the authenticated

subjects that are configured for the AAS. They are

selectable by the access permission rules to assign

permissions to the subjects.

Default: reference to the submodel referenced via

defaultSubjectAttributes.

Submodel ref* 0..1

defaultSubjectAttributes* Reference to a submodel defining the default subjects

attributes for the AAS that can be used to describe

access permission rules.

The submodel is of kind=Type.

Submodel ref* 1

selectablePermissions* Reference to a submodel defining which permissions

can be assigned to the subjects.

Default: reference to the submodel referenced via

defaultPermissions

Submodel ref* 0..1

defaultPermissions* Reference to a submodel defining the default

permissions for the AAS.

Submodel ref* 1

90 | ATTRIBUTE BASED & ROLE BASED ACCESS

Class: AccessControl

selectableEnvironmentAttributes Reference to a submodel defining which environment

attributes can be accessed via the permission rules

defined for the AAS, i.e. attributes that are not

describing the asset itself.

Default: reference to the submodel referenced via

defaultEnvironmentAttributes

Submodel ref* 0..1

defaultEnvironmentAttributes Reference to a submodel defining default environment

attributes, i.e. attributes that are not describing the

asset itself.

The submodel is of kind=Type.

At the same type the values of these environment

attributes need to be accessible when evaluating the

access permission rules. This is realized as a policy

information point.

Submodel ref* 0..1

ATTRIBUTE BASED & ROLE BASED ACCESS | 91

5.4.6 Attributes for Access Permission Rule

Figure 52 Metamodel for Access Permission Rule

Class: AccessPermissionRule

Explanation: Table that defines access permissions per authenticated subject for a set of objects

(referable elements).

Inherits from: Referable; Qualifiable

Attribute (*=mandatory) Explanation Type Kind Card.

targetSubjectAttributes* Target subject attributes that need to be

fulfilled by the accessing subject to get

the permissions defined by this rule.

SubjectAttributes aggr 1..*

permissionsPerObject* Set of object-permission pairs that define

the permissions per object within the

access permission rule.

PermissionsPerObject aggr 1..*

Class: PermissionPerObject

Explanation: Table that defines access permissions for a specified object. The object is any referable element in the AAS.

Additionally object attributes can be defined that further specify the kind of object the permissions apply to.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

object* Element to which permission shall be assigned. Referable attr 1

targetObjectAttributes Target object attributes that need to be fulfilled so that the

access permissions apply to the accessing subject.

ObjectAttributes aggr 0..1

permission Permissions assigned to the object. Permission attr 0..*

class Security - AccessPermissionRule

Qualifiable

Referable

AccessPermissionRule

+ targetSubjectAttributes: SubjectAttributes [1..*]

+ permissionsPerObject: PermissionsPerObject [0..*]

PermissionsPerObject

+ object: Referable*

+ targetObjectAttributes: ObjectAttributes [0..1]

+ permission: Permission [0..*]

Permission

+ permission: Property*

+ kindOfPermission: PermissionKind

SubjectAttributes

+ subjectAttribute: Property [1..*]

«enumeration»

PermissionKind

 allow

 deny

 not applicable

 undefined

ObjectAttributes

+ objectAttribute: Property [1..*]

92 | ATTRIBUTE BASED & ROLE BASED ACCESS

Class: PermissionPerObject

The permissions hold for all subjects as specified in the

access permission rule.

Class: ObjectAttributes

Explanation: A set of data elements that describe object attributes. These attributes need to refer to a data element within

an existing submodel.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

objectAttribute* A data elements that further classifies an object. DataElement ref* 1..*

Class: Permission

Explanation: Description of a single permission.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

permission* Reference to a property that defines the semantics of the

permission.

Constraint AASd-010: The property has the category

“CONSTANT”.

Constraint AASd-011: The permission property shall be part of

the submodel that is referenced within the

“selectablePermissions” attribute of “AccessControl”.

Property ref* 1

kindOfPermission* Description of the kind of permission. Possible kind of

permission also include the denial of the permission.

Values:

• allow

• deny

• not applicable

• undefined

PermissionKind attr 1

Class: SubjectAttributes

Explanation: A set of data elements that further classifies a specific subject.

Inherits from: --

Attribute

(*=mandatory)

Explanation Type Kind Card.

subjectAttribute* A data element that further classifies a specific subject.

Constraint AASd-025: The data element shall be part of the

submodel that is referenced within the

“selectableSubjectAttributes” attribute of “AccessControl”.

DataElement ref* 1..*

ATTRIBUTE BASED & ROLE BASED ACCESS | 93

Enumeration: PermissionKind

Explanation: Enumeration of the kind of permissions that is given to the assignment of a permission to a subject.

Literal Explanation

allow Allow the permission given to the subject.

deny Explicitly deny the permission given to the subject.

not applicable The permission is not applicable to the subject.

undefined It is undefined whether the permission is allowed, not applicable or denied to the subject.

94 | PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX)

6 Package File Format for the Asset

Administration Shell (AASX)

PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX) | 95

6.1 General

In some use cases it is necessary to exchange the full or partial structure of the Asset Administration Shell with or

without associated values and/or make the information persistent (e.g. store it in a file server). This would mean that it

is necessary to define a file format that can hold and store this information. Therefore, a package file format for the

Asset Administration Shell (AASX) is defined based on the following requirements:

• Generic package file format to include the Asset Administration Shell structure, data and other related files

• Main use cases are the exchange between organizations/partners and storage/persistency of the Asset

Administration Shells’ information.

• Without any legal restriction and no royalties. Preferably based on an international standard with high guarantees

of future maintainability of that format

• Existence of APIs to create, read and write this format

• Digital signatures & encryption capabilities must be provided

• Policies for authenticity and integration of package files14

6.2 Selection of the reference format for the Asset Administration Shell

package format

The ZVEI Führungskreis Industrie 4.0 – Spiegelgremium Modelle & Standards has decided to use the Open Packaging

Conventions (OPC)15 format as the reference for the Asset Administration Shell package format definition, due to the

following reasons:

• Open Packaging Conventions is an international standard specified in ISO/IEC 29500-2:2012 and ECMA-376.

• Open Packaging Conventions is based on ZIP (as a package container) and XML (for the description of some

internal files and definitions). Those two technologies are the most widely used in their respective domains and

are also addressed for long-term archiving.

• Open Packaging Conventions can be used as package for non-office applications too (there are many examples

available, such as NuGet, FDI packages, etc.). It provides a logical model that is independent from how the files

are stored in the package. This logical model can be expanded to any sort of application.

• Open Packaging Conventions is also used in the scope of Industry (e.g. FDI packages, MTP – Namur Modul

Type Package) and currently in discussion as possible container format for some FDT® and ODVA Project

xDS™ use cases.

• Open Packaging Conventions (and Open Document Format packages too) supports digital signing. It can be

done for individual files inside the package. Encryption isn’t specified in Open Packaging Conventions (it only

mentions what shall not be done). Anyway, encryption is still possible (see later)

• There are some APIs to handle Open Packaging Conventions packages (Windows API, .NET, Java, …) without

the need of much knowledge on the technical specification

• Chunking in Open Packaging Conventions is encouraged, i.e. split files into small chunks. This is better for

reducing the effect of file corruption and better for data access.

• There are some international organizations that recommend using Open Document Format (ISO/IEC 26300-3)

instead (e.g. EU, NATO, …), but this recommendation is related to the formats used specifically in office

applications.

• The Office Open XML and Open Packaging Conventions specifications originated from Microsoft Corporation

and later standardized as ISO/IEC 29500 and ECMA-376. Current and future versions of ISO/IEC 29500 and

ECMA-376 are covered by Microsoft's Open Specification Promise, whereby Microsoft "irrevocably promises"

14 Role-based policies to access this package is not defined, as this is a feature of the systems that host the AASs (see section 0)

15 Not to be confused with OPC (Open Platform Communication) of the OPC Foundation. Therefore, we will use the full term of

“Open Packaging Conventions” instead of the abbreviation “OPC”.

96 | PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX)

not to assert any claims against those making, using, and selling conforming implementations of any

specification covered by the promise (so long as those accepting the promise refrain from suing Microsoft for

patent infringement in relation to Microsoft's implementation of the covered specification). [24]

• Office Open XML (including the Open Packaging Conventions format) and Open Document Format are

politically conflicting formats (see details in [25] and [26]). Choosing Open Packaging Conventions as the

option for storing the Asset Administration Shell information was solely a technical decision based on the

arguments mentioned here.

• Open Packaging Conventions was chosen in favour of iiRDS (v1.0). The scope of iiRDS might not be aligned

with the requirements of the Asset Administration Shell, i.e. iiRDS is mostly a format for storing technical

documentation of industry devices based on concepts of ontology.

6.3 Basic concepts of the Open Packaging Conventions

The packaging model specified by the Open Packaging Conventions describes packages, parts, and relationships.

Packages hold parts, which hold content and resources, such as files16. Every file in a package has a unique URI-

compliant file name along with a specified content-type expressed in the form of a MIME media type.

Relationships are defined to connect the package to files, and to connect various files in the package. The definition of

the relationships is the logical model of the package. The resource that is a source of a relationship must be either the

package itself or a data component (file) inside of the package. The target resource of a relationship can be any URI-

addressable resource inside or outside of the package. It is possible to have more than one relationship that share the

same target file (see example 9–6 in ISO/IEC 29500-2: 2012).

The physical model maps those logical concepts to a physical format. The result of this mapping is a physical package

format (a ZIP archive format) in which files appear in a directory-like hierarchy. Any individual or organization can

design a physical package format by mapping logical package concepts to a desired physical format. Thus, package

format designers can design and optimize a physical format for the specific needs of an application without

compromising the logical structure of the package (adapted from [27] and [28]).

6.4 Conventions for the Asset Administration Shell package file format

(AASX)

The Asset Administration Shell Package (AASX) format derives from the Open Package Conventions standards,

consequently inheriting its characteristics. Nevertheless, some convention shall be defined for the AASX:

• Package format and rules according to ISO/IEC 29500-2:2012. Any derivate format from this standard (such as

the AASX format) requires the definition of a logical model, physical model and a security model. Those

specific conventions are described in the next subsections.

• File extension for the AASX format: .aasx

• MIME-type for the AASX format: application/asset-administration-shell-package17

• Icon for the AASX (to be defined).

• The AASX format can be identified by the file extension and MIME type. Content-wise, it is possible to identify

it when reading the first relationship file /_rels/.rels (as defined in Open Packaging Conventions) and looking for

a relationship type http://www.admin-shell.io/aasx/relationships/aasx-origin (which is the entry point for the

logical model of the Asset Administration Shell).

• The following paths and filenames in the package are already reserved by the Open Packaging Conventions

specification and therefore shall not be used for any derivative format:

 /[Content_Types].xml

16 The term “file” will be used instead of “part”.

17 The currenty MIME-type is provisory and needs to be requested officialy.

PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX) | 97

 /_rels/.rels

 /<file_path>/_rels/<filename>.rels

(where <filename> is a file (including its extension) in the package that is source of relationships and

<file_path> is the path to that file.

• It is not mandatory to open the AASX format in any existing Office Open XML / Open Packaging Conventions

compatible office-application (e.g. Microsoft Office, LibreOffice), because the required relationships and files

for the different office “models” may not be present (e.g.

http://schemas.openxmlformats.org/officeDocument/2006/relationships/officeDocument for “docx” document).

6.5 Logical model

As mentioned before, it is necessary to define a logical model for formats on top of Open Packaging Conventions.

Figure 53 defines the logical model for the AASX format. It is made of a set of relationship types (URI), their

cardinality (how many relationships of that type are possible) and the source of the relationship. In addition (not shown

in Figure 53), a specific relationship instance has also a unique ID and a target resource (URI of a target file inside or

outside the package).

Figure 53 Logical model for the AASX format18

The relationships for thumbnail, core-properties, digital-signatures (origin, signature and certificate) are defined by

Open Packaging Conventions, so no need to reinvent. The other relationships were specifically defined to support the

Asset Administration Shell specific files. Here a short description on each relationship19 of Figure 53:

• thumbnail – Optional. Required to define a thumbnail for that package (e.g. picture of the administrated device).

The thumbnail picture can be shown instead of the package’s icon based on the extension and/or MIME type.

• core-properties – Optional. There is a schema for describing the package through "core properties," which uses

selected Dublin Core metadata elements in addition to some Open Packaging Conventions-specific elements.

The core-properties do not describe the Administration Shell, but the package itself. Some elements of the core-

properties may be similar/equal to elements of the Administration Shell. Some core-properties are: Title, Subject,

18 Note that the logical model does not state anything about the format / content of the target files of relationships. This

will be addressed in the physical model.

19 To avoid the long names of the relationships, we will use the short name along the text.

http://schemas.openxmlformats.org/

package/2006/relationships/

metadata/thumbnail

http://schemas.openxmlformats.org/

package/2006/relationships/

metadata/core-properties

http://schemas.openxmlformats.org/

package/2006/relationships/

digital-signature/origin

(root)

http://www.admin-shell.io/

aasx/relationships/

aas-spec

http://schemas.openxmlformats.org/
package/2006/relationships/

digital-signature/signature

http://schemas.openxmlformats.org/
package/2006/relationships/

digital-signature/certificate

http://www.admin-shell.io/

aasx/relationships/
aas-spec-split

http://www.admin-shell.io/

aasx/relationships/
aas-suppl

0..1

0..1

0..1

1

0..*

1..*

0..1

0..*

http://www.admin-shell.io/

aasx/relationships/
aasx-origin

1..*

98 | PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX)

Creator, Keywords, Description, LastModifiedBy, Revision, LastPrinted, Created, Modified, Category,

Identifier, ContentType, Language, Version, ContentStatus.

• digital-signature/origin, digital-signature/signature and digital-signature/certificate – Optional. Required if

you need to sign files and relationships inside the package. Their relationships basically target files that contain

the data on signatures (e.g. certificate, digests, …). See the description later in this document about digital

signatures.

• aasx-origin – Mandatory. Origin of the AASX specific relationships and files. From this origin one or more

AAS can be defined. The producer should not create any content in the aasx-origin file itself. As the Open

Packaging Conventions relationship model does not allow to target directories inside the ZIP, the alternative is to

create an empty file that serves as the entry-point for the AASX information (this is the same approach as it is

used for digital signatures).

• aas-spec – at least one relationship of this type is mandatory. Targets the file that contains the

structure/specification of an AAS (as defined in this document) and thus serving as the entry point of the AAS

specific data. Optionally, some of the specification of an AAS can be “splitted” into separate files, but in any

case, this aas-spec file is still mandatory and contains at least the non-splittable information.

• aas-spec-split – Optional. This relationship will target a file containing a splittable part of the AAS

specification. Some serialization formats allow that parts of the AAS can be splitted into several files. Those files

are then referenced by this relationship type, so that any consumer of the AASX can "reassemble" the AAS

information.

• aas-suppl – Optional. Targets any additional file, especially if it is referenced (not stored as blob) in the data of

an AAS (via File property).

Note: not all of the references inside the specification of an AAS may target files that are also stored inside the
AASX.

6.6 Physical model

The physical model defines how the different files are stored in the package, based on Open Packaging Conventions and

how files are addressed in the relationships. As mentioned before, the physical package format is a ZIP file that can be

open and edit in any PKWARE/ZIP compatible application.

In order to utilize the identifiers of Administration Shell and SubModels, friendly names are required. The friendly

name of such entities is built by searching all characters of the identifier, which are not letters or digits and substituting

them with an underscore "_".

A feature of this physical and logical model is that the filename and location of those files can be customized (if

associated relationships have a correct URI to those files, and therefore can be used to locate the files according to the

logical structure). For example, one package producer might store an aas-spec file in /aasx/device.xml, the other one in

/asset-admin-shell/productX123.xml, but both use the same relationship type for that files. To have a more consistent

approach on the physical model, the following best-practice is defined for storing files inside the AASX package:

• Open Packaging Conventions related files should be stored according to the API that was used to

generate/manipulate the AASX package (it is not recommended to do this manually).

• /aasx/ shall be the root folder for the AASX package specific information.

• /aasx/aasx-origin shall be the target of the relationship aasx-origin without content (empty file).

• /aasx/<aas-friendly-name>/ shall be the folder for storing all files for a specific AAS, where <aas-friendly-

name> is the friendly name of the AAS.

• /aasx/<aas-friendly-name>/<aas-friendly-name>.aas.<extension> shall be the target of a relationship of type

aas-spec, where <extension> is the extension based on the type of serialization (e.g. .xml, .json).

• /aasx/<aas-friendly-name>/<aas-friendly-name>.<view-idshort>.view.<extension> shall be the target of a

relationship of type aas-spec-split that contains a specific view definitions of an AAS. This is only required if the

view definitions aren’t defined in the target file of aas-spec.

PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX) | 99

• /aasx/<aas-friendly-name>/<aas-friendly-name>.cdic.<extension> shall be the target of a relationship of type

aas-spec-split that contains the ConceptDictionary definition of an AAS. This is only required if the

ConceptDictionary isn’t defined in the target file of aas-spec.

• /aasx/<aas-friendly-name>/<aas-friendly-name>.secattrib.<extension> shall be the target of a relationship of

type aas-spec-split that contains the Security model of an AAS. This is only required if the Security models isn’t

defined in the target file of aas-spec.

• /aasx/<aas-friendly-name>/<submodel-friendly-name>/ shall be the folder to store files related to a submodel

of an AAS (targets of aas-suppl relationships that are referenced in that submodel and splits containing submodel

information). <submodel-friendly-name> is the friendly name of the submodel.

• /aasx/<aas-friendly-name>/<submodel-friendly-name>/<submodel-friendly-name>.submodel.<extension>

shall be the target of a relationship of type aas-spec-split that contains a submodel definition of an AAS. This is

only required if a submodel isn’t defined in the target file of aas-spec.

• Those file names must only contain characters that can be used for file names.

• The conventions defined here shall not be used for other files. E.g. any other file in a submodel folder shall not

contain the substring “.submodel.” in its name.

• Note that the format of the files targeted by the relationships aas-spec and aas-spec-split depend on the

serialization format that was used to generate them (e.g. xml, json, …).

• It is also possible to have different serialization formats of the same Administration Shell stored in the same

AASX. In this case, the different serialization formats can be stored in parallel with different extension, different

MIME type and different relationships. For example, Waterpump24634.aas.xml and Waterpump24634.aas.json

are stored in the same folder Waterpump24634, but are targets of different relationships (different IDs) of the

same relationship type aas-spec. Both are then the entry-point of different source relationship branches (each one

having its own .rels file, i.e. Waterpump24634.aas.xml.rels and Waterpump24634.aas.json.rels).

• To avoid duplication of data, it is possible to target the same file by different relationships (e.g. two different

relationships of type aas-suppl may have the same target file).

An example of a physical model for an AASX based on a sample product is shown in Figure 54. It shows the content of

the package listed in a tree view and one example mapping to the logical model as defined in Figure 53. The physical

structure is based on the best practice mentioned before. Note that in the example there is only one AAS in the package,

one submodel (programs) is stored in a separate file and the certificate is embedded into the signature file (so no need of

the additional relationship). It is also assumed in this example that the AAS specification files are serialized into XML.

100 | PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX)

Figure 54 Physical model for an AASX based on a sample product (left) and an example of mapping to the

logical model (right)

It is possible to classify the files in a AASX package into the following types: 1) files that are referenced in the

relationships of the logical model and must match the target URI inside each relationship, 2) “Files that aren’t source or

target of any relationship (not allowed as they do not follow the logical model defined in this document and might

impact some aspects regarding digital signatures and its verification) and 3) Open Packaging Conventions specific files

that aren’t associated to the logical model (relationships):

• /[Content_Types].xml – contains a list of extensions and MIME type of all file types inside the package. The

element override can specify the MIME type for specific files independent of the extension. The MIME type of

AASd-specific files depends on the type of serialization that was used to generate the content of the files (e.g. if

XML was used for some files, then the MIME type "text/xml" together with the used file extensions must appear

in [Content_Types].xml. If there is no specific MIME type for some files, then "application/octet-stream" shall

be used.

• /_rels/.rels – contains all relationships coming from the source “root” (which is the package itself), binding the

source with a target (the URI of an internal file or external resource). For example, for the thumbnail relationship

it looks like this:

• <Relationship Type = "http://schemas.openxmlformats.org/package/2006/ relationships/metadata/thumbnail"

Target = "/Thumbnail.jpeg" Id = "Rc76d59d18bd7440f" />

• This means that the target data for this thumbnail relationship is stored in /Thumbnail.jpeg.

• /<file_path>/_rels/<filename>.rels – non-root relationships are stored in those files. E.g. the relationship based

on type aas-spec-split starting from the source file Waterpump24634.aas.xml are stored in file

/aasx/Waterpump24634/_rels/Waterpump24634.aas.xml.rels.

An AASX can be generated by using different means:

• Manually by adding files (changing files) to (of) a Zip file. This requires a deep understanding of the Open

Packaging Conventions format, because adding just a file to the package with an ZIP editor isn’t enough (i.e.

need to edit the [Content_Types].xml and some of the .rels files too)

Waterpump24634.aasx

_rels

.rels

aasx

_rels

aasx-origin.rels

Waterpump24634

_rels

Waterpump24634.aas.xml.rels

Documentation

Waterpump_handbook.pdf

Programs

Programs.submodel.xml

xFb_4564.bin

xFb_7356.bin

Waterpump24634.aas.xml

aasx-origin

digital-signature

_rels

origin.rels

origin

signatures.xml

[Content_Types].xml

core-properties.xml

Thumbnail.jpeg

http://www.admin-shell.io/

aasx/relationships/
aas-spec-split

relationship type
relationship source

relationship target

This is where the information of this relationship is

stored (relationship file of the source)

9f6dd5efr56fn8g0gtk

rela
tio

n
sh

ip
 ID

PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX) | 101

• Programmatically generating and changing the package format (e.g. using .NET System.IO.Packaging). This

will typically avoid the errors that can be done when creating manually the package. In addition, the Open

Packaging Conventions specific procedures, the logical, physical and security model defined for the derived

AASX must be considered.

6.7 Digital signatures

Essentially the digital signature of an electronic document (in this case the files and relationships inside the container)

aims to fulfil the following requirements [29]:

• that the recipient can verify the identity of the sender (authenticity);

• that the sender cannot deny that he signed a document (non-repudiation);

• that the recipient is unable to invent or modify a document signed by someone else (integrity).

A digital signature does not "lock" a document or cause it to become encrypted (although it may already be encrypted).

Document content remains unchanged after being signed. Digital signatures do not prevent signed content from being

viewed by unintended consumers.

A digital signing feature is already provided by the Open Packaging Conventions specification [27]. This signing

framework for packages uses the XML Digital Signature Standard, as defined in the W3C Recommendation XML-

Signature Syntax and Processing. This recommendation specifies the XML syntax and processing rules for producing

and storing digital signatures.

• The package files defined for the signing framework are the origin file, the signature file(s), and the certificate

file(s).

• digital-signature/origin file – starting point for navigating through the signatures in a package. The origin file is

targeted from the package root using the digital signature origin relationship (as shown in the logical model in

Figure 53). Multiple signature files may be targeted from the origin file. If there are no signatures in the package,

the origin file will not be present.

• digital-signature/signature file(s) – contain markup defined in the W3C Digital Signature standard as well as in

the packaging namespace. The files are targeted from the origin file with the signature relationship (as shown in

the logical model in Figure 53).

• digital-signature/certificate file(s) – The X.509 certificate required for identifying the signer, if placed in the

package, may be embedded within a signature file, or stored in a separate certificate file. The optional certificate

file is targeted from a signature file with the certificate relationship. The certificate file can be shared between

multiple signature files.

In the package, individual files and relationships can be independently signed20, meaning that it is possible to select

which files and relationships need a signature and which certificate to be used to sign. When the relationships file (.rels)

is signed as a whole, all the relationships defined in that file are signed too. Moreover, it is possible to use more than

one certificate to sign files and relationships.

The Open Packaging Conventions signing framework is quite flexible, and consequently some considerations must be

taken, especially when defining policies. The Open Packaging Conventions specification does not define policies, only

mentions that “designers that include digital signatures should define signature policies that are meaningful to their

users”. Besides guaranteeing authenticity, non-repudiation and integrity, digital signatures shall also be used to define

policies that are intended by the signers21 (typically the package producers) or in agreement with the package consumers

(e.g. consumer will only accept package with signed content). The decisions taken during the signature process impact

which consequent operations can be verified (e.g. allowing post-modification of a file, adding new relationships…).

20 Individual files and relationships can be signed, but not the full package. This is a question of definition, but signing the full

package could mean to sign all files inside the package (except the signature file).

21 The policies described here are for the AASX package and what can be changed. It does not define any policy e.g. on how to use

an AAS.

102 | PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX)

There is no need of a separate file in the package about policies, because these policies information can be retrieved on

how signing is performed. Signing a specific file in the package will implicitly express the intention of the signer on

what is or isn’t allowed with that file and related files (in case of relationship files). For instance, signing the aasx-origin

relationship file will not permit adding new AAS to the package. If new AAS are added anyway, this will invalidate the

original signature and nobody can blame the original signer for that change.

A package producer shall follow a digital signing policy based on the following options:

1. Sign nothing

2. Sign everything and thus following policy “No change allowed to the package” of Table 16.

3. Custom signing according to one or more policies of Table 16.

The package consumer may follow a validation process based on the policy of the signer(s) or an internal verification of

the package according to its own policies. The signature policy defined by the signer(s) does not directly tell that the

consumer should validate the package, but tells how it is intended by the signer(s). Nevertheless, validation might be

mandatory for joint applications where several parties (package producers and consumers) need to follow the same

rules. The following process for validation22 for AASX packages is established:

1. The validation process must start by checking that the consumed package is according to the Open Packaging

Conventions specification and that its implements the logical model according to the AASX definition.

Optionally it may analyse if the physical model is according to the best-practice for storing files inside the

AASX package.

2. Files that aren’t source or target of any relationship, aren’t allowed (besides the Open Packaging Conventions

specific files).

3. After these steps, the existing certificates that were used to sign the content of the package must valid and

trusted.

4. All signed content must then be verified and valid against the provided certificate information.

5. The signed content will also reveal a set of policies23 defined by the signers or defined in agreement with the

several parties (package producers and consumers), that must be followed by the consumer when changing the

package without invalidating it (see Table 16).

6. A package is only valid, if all previous steps are performed successfully. Any change done to the package by

the consumer requires a revalidation of the package.

Any of the steps mentioned in the validation can be performed independently without the other ones, but doing so, it is

not considered as validation (e.g. internal verification process by a consumer may only require to check if the package is

according to the Open Packaging Conventions and implementing the AASX logical model, without checking the

signatures).

Table 16 Set of possible policies based on how package files are signed, how to enable a given policy and the

consequences of a policy

 Policy How to enable the policy Consequence

G
en

er
a

l

No change allowed to the package Sign all files and relationships in the

package (except for

[Content_Types].xml24 and the

signature file(s))

Invalidates any change in the signed files.

New files that are added afterwards do

not have a signature and aren’t mentioned

in any relationship, thus invalidating

those files.

22 Validation. The assurance that a product, service, or system meets the needs of the customer and other identified stakeholders. It

often involves acceptance and suitability with external customers. Contrast with verification, which is often an internal process.

(Adapted from The PMBOK guide, a standard adopted by IEEE, 4th edition)

23 These policies are for the AASX package and not for the AAS itself.

24 When reading an AASX package, do not rely on the trustability of the file [Content_Types}.xml, as it was not possible to sign this

file.

PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX) | 103

No change allowed to the content of file X or

deletion of file X

Sign file X inside the package (e.g.

AAS, a submodel file, any file, …)

Invalidates tampering the content or

deletion of file X.

No change allowed to a relationship X Sign relationship X Invalidates tampering or deletion of the

relationship entry (i.e. the relationship

type, id and target URI) in the

corresponding relationship file. This will

not invalidate the content of source and

target files of a relationship, once

tampered.

No change allowed to any relationships that

have source file X

Sign relationship file X (X.rels) Invalidates adding, changing or removing

any relationship mentioned in that

relationship file. This will also invalidate

the addition of new files that would

otherwise being target in that relationship

file. For example, if there is no

relationship for the thumbnail in the root

relationship file before the signing of that

file, a posterior addition of thumbnail

relationship is then invalidated.

Enable digital signatures The digital-signature/origin

relationship must be signed

(alternatively, sign the complete root

relationship file that contains this

relationship)

Will enable digital signatures (but does

not specify the rules for signing, e.g. if

new signatures can be added).

Enable core-properties The metadata/core-properties

relationship must be signed

(alternatively, sign the complete root

relationship file that contains this

relationship)

Will enable the core-properties of the

package.

Enable thumbnail The metadata/thumbnail relationship

must be signed (alternatively, sign the

complete root relationship file that

contains this relationship)

Will enable the thumbnail for the

package.

Forbid counter-signatures (adding new

signatures)

Sign the signature origin relationship

file

Invalidates counter-signatures.

Forbid modifying existing file/relationship

digests for signatures based on a certificate

Sign object inside the corresponding

signature file that contains all the

file/relationship digests

Invalidates any change in the digests and

addition of new file digests.

A
A

S
X

-s
p

e
c
if

ic

Enable AASX specification The aasx-origin relationship must be

signed (alternatively, sign the

complete root relationship file that

contains this relationship).

Will enable the AASX specification on

top of the Open Packaging Conventions.

Forbid adding a new AAS or removing an

existing AAS.

Sign the aasx-origin relationship file Invalidates adding or removing AAS.

Forbid adding a new splittable parts or

removing an existing one to/from an AAS

Sign the aas-spec relationship file Invalidates adding or removing of

splittable parts to/from an AAS.

Forbid adding a new supplementary file or

removing an existing one to/from an AAS

Sign the aas-spec relationship file Invalidates adding or removing of extra

files to/from an AAS.

6.8 Encryption

The Open Packaging Conventions specification (ISO/IEC 29500-2:2012) mentions that “ZIP-based packages shall not

include encryption as described in the ZIP specification. Package implementers shall enforce this restriction. [M3.9]”25.

25 The reason for this might be related to the transparency requirement for the package format as well as license requirements of

PKWARE. For the ISO/IEC 21320-1 (Document Container File: Core) there is the following statement: “Encryption of individual

files and of the central directory is prohibited. Hence this profile of ZIP_PK is more transparent than its parent format.” [30]

104 | PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX)

However, an Open Packaging Conventions package may be encrypted with other means and some applications using

this package format as the basis for a more specific format, may use encryption during interchange or DRM for

distribution. [24]

An example is the Office Document Cryptography Structure (MS-OFFCRYPTO) used by derivate office formats. Some

used technologies may be covered by Patents from Microsoft and therefore it isn’t recommended for the AASX format.

Digital Rights Management (DRM) can also be used to encrypt content elements in a package with specific access

rights granted to authorize users (see the implementation in the system.io.packaging namespace [31]).

Regarding encryption and confidentiality, the following rules shall be followed:

1. Decide if there is a need of including confidential content in a package. If there is no reason, then the

confidential content should not be included.

2. If encryption is desired for a temporary communication act (e.g. e-mail exchange, …) or if a AASX needs to

be stored somewhere so that it can be opened later by the same entity, then encryption methods can be used for

that specific mean (e.g. use BitLocker when storing the AASX in Windows-based systems that support it, use

S/MIME for exchanging encrypted e-mails between entities, etc.).

3. For all other use cases26 where encryption is required for some or all of the content of the AASX:

• Encryption methods can be used for individual files in the AASX package, as soon as the “encrypted”

version replaces the original file in the package, the MIME type of the encryption format is known,

and the MIME type must be listed in the [Content-Type].xml. The relationships as defined in this

document remain the same, whenever content is encrypted or not. Note that Open Packaging

Conventions related files as well as relationship files shall not be encrypted, and digital signing must

be performed after encryption. One example of an encryption standard is the Secure MIME

(S/MIME), where the encrypted content should be stored in application/pkcs7-mime format as

defined in RFC 5652 and use the file extension *.p7m.

• Besides encrypting the content of the package (individual files) it is possible to encrypt the full

package (e.g. also using Secure MIME and saving the encrypted package in application/pkcs7-mime

file format). In this case, the signature of the content of the package must be done before the

encryption.

26 A use case could be to encrypt a submodel and only provide the access to the unencrypted data after paying a fee.

PACKAGE FILE FORMAT FOR THE ASSET ADMINISTRATION SHELL (AASX) | 105

106 | SUMMARY AND OUTLOOK

7 Summary and Outlook

SUMMARY AND OUTLOOK | 107

In this document an UML metamodel for the structural viewpoint of the AssetAdministration Shell is defined. An XML

schema as well as for JSON schema are derived from it.

Additionally, a data specification template for defining properties is provided.

The following aspects will be covered by upcoming versions of the structural metamodel:

• Specifics for composite Administration Shells

• Event-Logging and History (including security aspects)

• Additional security aspects that were not yet needed for the use case under consideration like

o Authentication

o Certificates

• Reset Policies

• Additional data specification templates for additional types of submodel elements

• Handling of capabilities, skills and how they are related to operation.

• Definition of a formal formula language for constraints

• Further serializations as for AutomationML and RDF

• Additional attributes for administrative information, e.g. ”time stamp”, “time created” and “operational

responsibility” as defined in IEC 62832 etc.

An OPC UA serialization is worked on in the joint work group of OPC Foundation, VDMA and ZVEI “I4AAS”.

The meta model and concepts of the Asset Administration Shell described in this publication are, among others,

implemented in the open source Software Development Kit (SDK) of the publicly funded project BaSys 4.0. It

comprises modules for creation, modification and export (XML and JSON) of Asset Administration Shells as well as

others. It will be made available by the beginning of 201927.

The next parts of the document series will cover:

• Interfaces and API for using a single AAS information model described in Part 1 (access, modify, query and

execute information and active functionality)

• The infrastructure, which hosts and interconnects multiple AAS together. It implements registry, discovery

services, endpoint handling and more.

27 https://projects.eclipse.org/projects/technology.basyx

https://projects.eclipse.org/projects/technology.basyx

108 | ANNEX

Annex

ANNEX | 109

Annex A. Concepts of the Administration Shell

1. General

In this clause, a general information is given about sources of information and relevant concepts for the Asset

Administration Shell. Some of these concepts are explained in a general manner. Some concepts are update in order to

reflect actual design decisions. No new concepts are introduced. Thus, the clause can be taken as a fully informative

(annex) to the specification of the Administration Shell.

2. Relevant sources and documents

The following documents were used to identify requirements and concepts for the Administration Shell:

• Implementation strategy of Plattform Industrie 4.0 [1,2]

• Aspects of the research roadmap in application scenarios [7]

• Continuation of the application scenarios [8]

• Structure of the Administration Shell [4, 18]

• Examples for the Administration Shell of the Industrie 4.0 Components [6]

• Technical Overview “Secure identities” [9]

• Security of the Administration Shell [14]

• Relationships between I4.0 components – Composite components

and smart production [12]

Note: The global Industrie 4.0 glossary can be found at: https://www.plattform-
i40.de/I40/Navigation/EN/Service/Glossary/glossary.html

Note: The online library of the Plattform Industrie 4.0 can be found at: https://www.plattform-
i40.de/I40/Navigation/EN/InPractice/Online-Library/online-library.html

3. Basic concepts for Industrie 4.0

Industrie 4.0 describes concepts and definitions for the domain of smart manufacturing. For Industrie 4.0, the term

asset, being any "object which has a value for an organization", is of central importance [2, 23]. Thus, assets in Industrie

4.0 can take almost any form, for example be a production system, a product, a software installation, intellectual

properties or even human resources.

According [23], the "reference architecture model Industry 4.0 (RAMI4.0) provides a structured view of the main

elements of an asset using a level model consisting of three axes [...]. Complex interrelationships can thus be broken

down into smaller, more manageable sections by combining all three axes at each point in the asset’s life to represent

each relevant aspect."

Assets shall have a logical representation in the "information world", for example shall be managed by IT-systems.

Thus, an asset has to be precisely identified as an entity, shall have a "specific state within its life (at least a type or

instance)", shall have communication capabilities, shall be represented by means of information and shall be able to

provide technical functionality [23]. This logical representation of an asset is called Administration Shell [4]. The

combination of asset and Administration Shell forms the so-called I4.0 Component. In international papers [18], the

term smart manufacturing replaces the term Industrie 4.0.

For the large variety of assets in Industrie 4.0, the Administration Shell allows handling of these assets in the

information world in always the same manner. This reduces complexity and allows for scalability. Additional

motivation can be found in [2] [4] [7] [8].

https://www.plattform-i40.de/I40/Navigation/EN/Service/Glossary/glossary.html
https://www.plattform-i40.de/I40/Navigation/EN/Service/Glossary/glossary.html
https://www.plattform-i40.de/I40/Navigation/EN/InPractice/Online-Library/online-library.html
https://www.plattform-i40.de/I40/Navigation/EN/InPractice/Online-Library/online-library.html

110 | ANNEX

Figure 55 Important concepts of Industrie 4.0 attached to the asset [2, 23]. I4.0 Component to be formed by

Administration Shell and asset.

4. The concept of properties

According [20], the "IEC 61360 series provides a framework and an information model for product dictionaries. The

concept of product type is represented by 'classes' and the product characteristics are represented by 'properties'".

Such properties are standardized data elements. The definitions of such properties can be found in a range of

repositories, such as IEC CDD (common data dictionary) or eCl@ss. The definition of a property (aka standardized data

element type, property type) associates a worldwide unique identifier with a definition, which is a set of well-defined

attributes. Relevant attributes for the Administration Shell are, amongst other, the preferred name, the symbol, the unit

of measure and a human-readable textual definition of the property.

Source: ZVEI SG Modelle & Standards, basedon VDI/ VDE FA GMA 7.21

asset as uniquely

identified entity

type/ instance

of asset

communication

ability of asset

entirety of information

of AAS

functionality of AAS exposed by

an application programming
interface (API)

Asset

(physical world)

Administration shell

(logical representation)

I4.0 Component

ANNEX | 111

Figure 56 Exemplary definition of a property in the IEC CDD

The instantiation of such definition (just 'property', property instance) typically associates a value to the property. By

this mechanism, semantically well-defined information can be conveyed by the Administration Shell.

Note: Industrie 4.0 and smart manufacturing in general will require many properties which are beyond the current
scope of IEC CDD, eCl@ss or other repositories. It is expected, that these sets of properties will be
introduced, as more and more domains are modelled and standardized (next clause).

5. The concept of submodels

"The Administration Shell is the standardized digital representation of the asset, corner stone of the interoperability

between the applications managing the manufacturing systems" [18]. Thus, it needs to provide a minimal but sufficient

description according to the different application scenarios in Industrie 4.0 [7] [8]. Many different (international)

standards, consortium specifications and manufacturer specifications can already contribute to this description [18].

As the figure shows, information from different many different technical domains could be associated with a respective

asset and thus, many different properties are required to be represented in Administration Shells of future I4.0

Components. In order to manage these complex set of information, submodels provide a separation of concern.

112 | ANNEX

Figure 57 Examples of different domains providing properties for submodels of the Administration Shell

The Administration Shell is thus made up of a series of submodels [4]. These represent different aspects of the asset

concerned; for example, they may contain a description relating to safety or security [14] but could also outline various

process capabilities such as drilling or installation [6].

From the perspective of interoperability, the aim is to standardise only a single submodel for each aspect / technical

domain. For example, it will thus be possible to find a drilling machine by searching for an Administration Shell

containing a submodel “Drilling” with appropriate properties. For communication between different I4.0 components,

certain properties can then be assumed to exist. In an example like this, a second submodel, “energy efficiency”, could

then ensure that the drilling machine is able to cut its electricity consumption when it is not in operation.

Note: side benefit of the Administration Shell will be to simplify the update of properties from product design (and
in particular system design) tools, update of properties from real data collected in the instances of assets,
improve traceability of assets along life cycle and help certify assets from data.

6. Basic Structure of the Asset Administration Shell

The document on the Structure of the Asset Administration Shell [4] [18] presented a rough, logical view of the

AssetAdministration Shell’s structure. The AssetAdministration Shell – shown in blue in the following figure –

comprises different sets of information. Both, the asset and the Administration Shell are identified by a globally unique

identifier. It comprises a number of submodels for a characterisation of the AssetAdministration Shell.

Source: ZVEI SG Modelle & Standards

Administration shell, exemplary

Identification

Communication

Engineering

Configuration

Safety (SIL)

Security (SL)

Lifecycle status

Energy efficiency

Condition monitoring

Further ….

Drilling

Milling

Deep drawing

Clamping

Welding

Wet painting

Assembling

Inspecting

Process control

Further ….

A
rc

h
it

ec
tu

re
 g

o
al

:

S
ep

ar
at

io
n

 o
f

co
n

ce
rn

ANNEX | 113

Figure 58 Basic structure of the AssetAdministration Shell

Properties, data and functions will also contain information which not every partner within a value-added network or even

within an organisational unit should be able to access or whose integrity and availability should be guaranteed. Therefore

the structure of the Administration Shell shall be able to handle aspects such as access protection, visibility, identity and

rights management, confidentiality and integrity. Information security needs to be respected and has to be aligned with

an overall security concept. Implementation of security must go together with the implementation of other components

of an overall system.

Each submodel contains a structured quantity of properties that can refer to data and functions. A standardised format

based on IEC 61360-1/ ISO 13584-42 is envisaged for the properties. Thus, property value definition shall follow the

same principles as also ISO 29002-10 and IEC 62832-2. Data and functions may be available in various,

complementary formats.

The properties of all the submodels therefore result in a constantly readable directory of the key information of the

Administration Shell and thus of the I4.0 component. To enable binding semantics, Administration Shells, assets,

submodels and properties must all be clearly identified. Permitted global identifiers are IRDI (e.g. in ISO TS 29002-5,

eCl@ss and IEC Common Data Dictionaries) and URIs (Unique Resource Identifiers, e.g. for ontologies).

It should be possible to filter elements of the Administration Shell or submodels according to different given views (

Example C.4 in [18]). This facilitates different perspectives or use-cases for the application of Administration Shell's

information.

Source: ZVEI SG Modelle & Standards

Administration shell

Access on information and functionalities

Runtime data

(from the Asset)

Identification Asset

Identification Administration shell

Strict, coherent format
Different, complementary data

formats

=

Submodel 1 e.g. energy efficiency

Submodel 2 e.g. positioning mode

Submodel 3 e.g. CAD model

Property 1.1.1.1

Property 1.1.1.2

Property 1.1.1.3

Property 2.1.1

Property 1.1

Property 1.1.1

Property 2.1.1.1

Property 2.1.1.2

Property 2.1.2

Property 3.1

Property 3.1.1

Property 3.1.2

Property 2.1

Asset, e.g.

Electrical axis

Administration
shell

Complex data Complex data

Function Function

Function Complex data

Data (CAD) Data (CAD)

Function Function

114 | ANNEX

7. Requirements

This section collects the requirements from various documents that have impact on the specific structure of the

Administration Shell. These requirements serve as input for the specific description of the structures of the

Administration Shell.

The following requirements are taken from the document “Implementation strategy of Plattform Industrie 4.0” [2]. They

are marked “STRAT”. The "Tracking" column validates the requirements by linking to features of the UML metamodel

or this document in general.

ID Requirement Tracking

STRAT#1 A network of Industrie 4.0 components must be structured in such
a way that connections between any end point (Industrie 4.0
components) are possible. The Industrie 4.0 components and their
contents are to follow a common semantic model.

Network possible but not scope of
this part of the document series.

Common semantic model realized by
domain specific submodels
(HasSemantics/ ConceptDescription
and by Relations)

STRAT#2 It must be possible to define the concept of an Industrie 4.0
component in such a way that it can meet requirements with
different focal areas, i. e. “office floor” or “shop floor”.

Content-wise, many different
submodels possible.

STRAT#3 Industrie 4.0 compliant communication must be performed in such
a way that the data of a virtual representation of an Industrie 4.0
component can be kept either in the object itself or in a (higher
level) IT system.

Metamodel and information
representation independent of any
deployment scenario.

STRAT#4 In the case of a virtual representation of an I4.0 component in a

higher-level system, an integrity association must be ensured

between the asset and its representation.

Integrity part of security approach.

STRAT#5 A suitable reference model must be established to describe how a
higher level IT system can make the Administration Shell available
in an Industrie 4.0 compliant manner (SOA approach, delegation
principle).

Scope of upcoming part of the
document series; not scope of this
part.

STRAT#6 A description is required of how the Administration Shell can be
“transported” from the originator (e.g. component manufacturer
or electrical designer) to the higher level IT system (e.g. as an
attachment to an email).

Hierarchical representation by XML/
JSON and package file format allow
for different transport scenarios.

STRAT#7 Depending on the nature of the higher level systems, it may be
necessary for the administration objects to allow for deployment
in more than one higher level IT system.

Metamodel and information
representation independent of any
deployment scenario.

STRAT#8 The Industrie 4.0 component, and in particular the Administration
Shell, its inherent functionality and the protocols concerned are to
be “encapsulation-capable” or "separable" from any field busses in
use.

Metamodel and information
representation independent of any
communication scenario.

STRAT#9 The aim of the Industrie 4.0 component is to detect non-Industrie
4.0 compliant communication relationships leading to or from the
object’s Administration Shell and to make them accessible to end-
to-end engineering.

Non-Industrie 4.0 compliant
communication relationships could
be modelled by submodels and
therefore made available.

STRAT#10 It should be possible to logically assign other Industrie 4.0
components to one Industrie 4.0 component (e.g. an entire
machine) in such a way that there is (temporary) nesting.

References and preparations for
Composite components [12] (not in
scope of part 1)

STRAT#11 Higher level systems should be able to access all Industrie 4.0
components in a purpose-driven and restrictable manner, even
when these are (temporarily) logically assigned.

Scope of upcoming part of the
document series; not scope of this
part.

STRAT#12 Characteristics (1) Identifiability Given by Identifiable

ANNEX | 115

STRAT#13 Characteristics (2) I4.0-compliant communication Not scope of part 1

STRAT#14 Characteristics (3) I4.0-compliant services and multiple status Standardisation of submodels

STRAT#15 Characteristics (4) Virtual description Available by virtual representation
(Submodel and SubmodelElements)

STRAT#16 Characteristics (5) I4.0-compliant semantics HasSemantics

STRAT#17 Characteristics (6) Security and safety Security by Attribute Based & Role
Based Access.

Safety not scope of part 1

STRAT#18 Characteristics (7) Quality of services Metamodel and information
representation independent of any
communication scenario.

STRAT#19 Characteristics (8) Status Standardisation of submodels

STRAT#20 Characteristics (9) Nestability Preparations for Composite
components [12] (not in scope of
part 1)

STRAT#21 The minimum infrastructure must satisfy the principles of Security
by Design (SbD).

Security by Attribute Based & Role
Based Access.

The following requirements are taken from the document “The Structure of the Administration Shell:

Trilateral perspectives from France, Italy and Germany” [18]. They are marked “tAAS”.

Note: The term “property” was used in a very broad sense in previous publications of the Plattform Industrie 4.0.
The metamodel in this document distinguishes between properties in a more classical se nse as data element
like “maximum temperature” and other submodel elements like operations, events etc.

Source Requirement Tracking

tAAS-#1 The Administration Shell shall

accept properties from different

technical domains in mutually

distinct submodels that can be

version-controlled and maintained

independently of each other.

Identifiable

AdministrativeInformation

Submodel

Requirements tAAS-#1 implicitly contains the requirements of

versioning. Versioning is supported for all elements inheriting

from Identifiable.

Requirement tAAS-#1 is fulfilled because several submodels per

AAS are possible. Every submodel is identifiable and an

Identifiable may contain administrative information

(administrativeInformation) for versioning.

The reason for submodels to be identifiable is that they may be

maintained independently of other submodels (Requirement

tAAS-#1) and that they can be reused within different AAS.

However, since submodel elements may refer to elements from

other AAS dependencies have to be considered in parallel

development and before reuse.

tAAS-#2 The Administration Shell should be

capable of including properties

from a wide range of technical

domains and of [sic!] identify

which domain they derive from.

HasSemantics

Via semantic references property definitions from different

dictionaries and thus different domains can be used within

submodels.

116 | ANNEX

The only thing required is that the domain a property is derived

from has a unique id (semanticId).

tAAS-#3 For finding definitions within each

relevant technical domain, different

procedural models should be

allowed that respectively meet the

requirements of standards,

consortium specifications and

manufacturer specifications sets.

HasSemantics.semanticId (see tAAS-#2)

ConceptDescription

Proprietary manufacturer specific property – or more general –

concept descriptions or copies from external dictionaries are

supported by defining ConceptDescriptions. They are referenced

in semanticId via their global id.

Up to now there is only a predefined data specification template

for Property elements (DataSpecification_IEC61360).

Usage of proprietary concept descriptions is not recommended

because then interoperability cannot be ensured.

tAAS-#4 Different Administration Shells in

respect of an asset must be capable

of referencing each other.

In particular, elements of an

Administration Shell should be able

to play the role of a “copy” of the

corresponding components from

another Administration Shell.

AssetAdministrationShell.derivedFrom

The derivedFrom relationship is especially designed for

supporting the relationship between an Asset Administration

Shell representing an asset type and the Asset Administration

Shells representing the asset instances of this asset type.

See also tAAS-#16

tAAS-#5 Individual Administration Shells

should, while retaining their

structure, be combined into an

overall Administration Shell.

Composite Administration Shells will be covered in future

versions or parts of the document series

tAAS-#6 Identification of assets,

Administration Shells, properties

and relationships shall be achieved

using a limited set of identifiers

(IRDI, URI and GUID), providing

as far as possible offer global

uniqueness.

Identifiable

Identification.idType

Requirement tAAS-#6 is fulfilled for all elements inheriting from

Identifiable. For example, this is the case for Asset,

AssetAdministrationShell and for concept descriptions. However,

properties (like any other submodel element) are only referable.

However, unique referencing is possible via the unique submodel

id and the Reference via Keys concept.

The supported id types include IRDI, URI and GUID (=Custom)

as requested.

tAAS-#7 The Administration Shell should

allow retrieval of alternative

identifiers such as a GS1 and GTIN

identifier in return to asset ID

(deferencing).

Asset.assetIdentificationModel

Every asset has a globally unique identifier. Besides this global

identifier additional local identifiers can be specified within a

special submodel called “assetIdentificationModel”.

The asset identification model itself is not predefined by the

metamodel. This means there is the need to define a submodel

that can contain alternative identifiers including semantic

references to know the meaning of the additional identifier.

tAAS-#8 The Administration Shell consists

of header and body.

AssetAdministrationShell

The Asset Administration Shell does not explicitly distinguish

between Header and Body. However, the Asset Administration

Shell has attributes defined that belong to itself like the global

ANNEX | 117

unique id (identification), version information

(administrativeInformation), a mandatory reference to the asset

(asset) it represents etc.

tAAS-#9 The header contains information

about the identification.

AssetAdministrationShell.asset

The Asset Administrative Shell is representing an asset with a

unique id.

See also tAAS-#7

See also tAAS-#13

tAAS-#10 The body contains information

about the respective asset(s).

AssetAdministrationShell.submodels

All submodels give information with respect to or related to the

asset presented by the AAS.

Note: An Asset Administration Shell is representing exactly one

asset. In case of a Composite Asset Administration Shell it is

implicitly representing several assets (see also tAAS-#5).

tAAS-#11 The information and functionality

in the Administration Shell is

accessible by means of a

standardised application

programming interface (API).

Will be covered in future parts of the document series

tAAS-#12 The Administration Shell has a

unique ID.

AssetAdministrationShell.identification.id

Since AssetAdministrationShell inherits from Identifiable

Requirement tAAS-#12 is fulfilled.

tAAS-#13 The asset has a unique ID. Asset.identification.id

Since Asset inherits from Identifiable Requirement tAAS-#13 is

fulfilled.

See also Requirement tAAS-#7.

Since Asset does not contain any specific attributes mandatory

and only suitable for sensors etc. also more complex assets like

industrial facilities can be modelled (Requirement tAAS-#14).

The only assumption is that the industrial facility also has a

globally unique id.

Note: See also Composite Asset Administration Shell (see tAAS-

#5) that allows the modelling of complex assets consisting of

other assets that are represented by an AAS each by themselves.

tAAS-#14 An industrial facility is also an

asset, it has an Administration Shell

and is accessible by means of ID.

Asset

Asset.identification.id

Since Asset does not contain any specific attributes mandatory

and only suitable for sensors etc. also more complex assets like

industrial facilities can be modelled. The only assumption is that

the industrial facility also has a globally unique id.

Note: See also Composite AssetAdministration Shell (see tAAS-

#5) that allows the modelling of complex assets consisting of

other assets that are represented by an AAS each by themselves.

tAAS-#15 Types and instances must be

identified as such.

HasKind (with kind=Type or kind=Instance) for Asset

AssetAdministrationShell.derivedFrom

118 | ANNEX

Since Asset inherits from HasKind Requirement tAAS-#15 is

fulfilled and asset types can be distinguished from asset instances.

Additionally a derivedFrom relationship can be established

between the AAS for an asset instance and the AAS for the asset

type.

tAAS-#16 The Administration Shell can

include references to other

Administration Shells or Smart

Manufacturing information.

ReferenceElement

File

Blob

AssetAdministrationShell.derivedFrom

The derivedFrom relationship between two AAS is special and is

for example used to establish a relationship between asset

instances and the asset type.

For composite AAS (see tAAS-#5) there also is the relationship

to AAS the composite AAS is composed of.

The ReferenceElement is very generic and can reference another

AAS as well as information within another AAS or even some

information that is completely outside any AAS (as long as it has

a global unique id).

Files and BLOB can be used as submodel elements to include

very generic manufacturing information that is not or cannot be

modelled via properties or the other submodel elements defined

for the Asset Administration Shell.

tAAS-#17 Additional properties, e. g.

manufacturer specific, must be

possible.

HasDataSpecification

ConceptDictionary

Via Data Specification Templates additional attributes for assets,

properties and other submodel elements, submodels, views and

even the AssetAdministration Shell itself can be defined and

checked by tools.

New proprietary property descriptions can be locally added to the

local concept dictionary of the AAS and used for semantic

definition in properties or other submodel elements.

An extension of the metamodel by defining proprietary classes

inheriting from the defined classes of this metamodel is also

possible.

Via API (see tAAS-#11) new properties, other submodel

elements and submodels can be added – assumed the

corresponding access permissions are given.

tAAS-#18 A reliable minimum number of

properties must be defined for each

Administration Shell.

hasKind for Submodel and SubmodelElements

A reliable minimum number of properties is defined by the

metamodel itself. They are called (class) attributes.

HasKind (with kind=Type) for Submodel and submodel elements

enables the definition of submodel (element) types. These types

are referenced via semanticId.

Note: the term property within the metamodel has a special

semantics and shall not be mixed with the implicitly available

attributes of the different classes. Although these attributes as

ANNEX | 119

well might be based on existing standards they are no properties

in the sense that a semantic reference can be added that defines

the semantics externally: The semantics is defined for the

metamodel itself in the class tables within this document.

tAAS-#19 The properties and other elements

of information in the

Administration Shell must be

suitable for types and instances.

HasKind (with kind=Type or kind=Instance) for Submodel and

SubmodelElement

All elements inheriting from HasKind can distinguish between

types and instances. This is especially true for SubmodelElement

and Submodel.

Note: Submodels or properties of kind=Type do not describe an

asset of kind=Type. This is done via properties of kind=Instance.

tAAS-#20 There must be a capability of

hierarchical and countable

structuring of the properties.

DataElementCollection

Requirement tAAS-#20 is fulfilled by collections of data

elements. The collection can be further characterized whether it is

ordered and whether it may contain duplicates. Collections are

built recursively and thus contain other submodel elements of the

same AAS. For referencing properties or other submodel

elements of other AAS a reference (ReferenceElement) or

relationship element (RelationshipElement) needs to be included

as part of the complex property.

tAAS-#21 Properties shall be able to reference

other properties, even in other

Administration Shells.

DataElementCollection

ReferenceElement

RelationshipElement

OperationVariable in Operation

A reference element can either reference any other element that is

referable (i.e. inheriting from Referable) within the same or

another AAS. Or it can reference entities completely outside any

AAS via its global id.

Note: For referencing elements within the same AAS it is not

always necessary to use a reference property. Depending on the

context also submodel element collections, relations etc. might be

more suitable.

Within operations also other elements (that should have their

own semantic reference, OperationVariable) are referenced or

used as input or output argument.

tAAS-#22 Properties must be able to reference

information and functions of the

Administration Shell.

Operation

See also tAAS-#21

Functions in the sense of executable entities are represented as

operations.

The following requirements have been derived from the document "Security of the Administrative Shell" [14]. They are

marked as "SecAAS"

ID Requirement Tracking

120 | ANNEX

SecAAS-#1 Identification and authentication: It must be

ensured that the correct entities (Administration

Shell and users) interact with each other. This

applies both in a local communication context

(within a machine or plant) and in a global

context (across companies). The clear

identification (by authentication) of the

communication partners is a basic requirement

for the interaction with a management shell.

Without them, further security features

(confidentiality, integrity, etc.) cannot be

guaranteed.

Security.trustAnchor

Certificate

Trust anchors are realized by certificates.

Certificate handling will be detailed in future parts or

versions of the document (series).

SecAAS-#2 User and rights management: An

AssetAdministration Shell can have different

interaction partners. To control the possibilities

of interaction with the Administration Shell, a

user and rights management is necessary.

Security.policyAdministrationPoint

AccessControl

AccessControl.accessPermissionRule

There is no explicit subject management in the AAS:

It is assumed that the identity of the subject

requesting access with a given role (via the API - see

tAAS-#11) is authenticated outside the AAS. The

AAS can check the authorization via the endpoint to

the subject attributes provider.

For every object in the Asset Administration Shell

access permission rules can be defined.

SecAAS-#3 Secure Communication: Communication with

the Administrative Shell may include sensitive

information. Likewise, a change in the

communication between the Administration

Shell and its communication partners can cause

serious and dangerous disruptions in a machine

or plant. It is therefore mandatory that adequate

measures be taken to ensure communication

security. This must be done by using appropriate

security protocols.

Not applicable

SecAAS-#4 Event logging: The traceability of interaction

with the Administration Shell plays a crucial role

in the detection of security incidents. This

traceability is achieved through logging / event

logging and auditing. The management shell

must therefore provide methods that log accesses

and changes in state of the management shell

without modification. It is also important to be

able to centrally collect and evaluate this event

information.

History handling will be detailed in future parts or

versions of the document (series).

ANNEX | 121

Annex B. Templates for UML Tables

In this annex, the templates used for element specification are explained.

Template for document classes (elements):

Class:

Explanation:

Inherits from:

Attribute

(*=mandatory)

Explanation Type Kind Card.

Kind is defined with semantics of UML:

- attr: attribute (Type is no Object)

- aggr: aggregation (does not exist independent of its parent)

- ref: composition (does exist independent of its parent)

Additionally, there is kind:

- ref*: reference via “Reference” class with target=<Type>

- For more information on referencing see clause 3.6.15

Card. is the cardinality.

Template for enumerations:

Enumeration:

Explanation:

Literal Explanation

122 | ANNEX

Annex C. Legend for UML Modelling

Figure 59 Aggregation in Metamodel in UML – Legend

Figure 60 Association in Metamodel in UML - Legend

Figure 61 Composition in Metamodel in UML - Legend

Figure 62 Identification in Metamodel in UML - Legend

ANNEX | 123

Figure 63 Inheritance Classes in Metamodel in UML - Legend

Figure 64 Inheritance Enumerations in Metamodel in UML - Legend

124 | ANNEX

Annex D. Metamodel UML with inherited

Attributes

In this annex some UML diagrams are shown together with all inhertied attributes.

See also Figure 29 for a diagram with all inherited attributes of ConceptDescription.

Figure 65 Core Model with inherited Attributes

 c
la

s
s

 C
o

re
 M

o
d

e
l

in
c

l.
 i

n
h

e
ri

te
d

 A
tt

ri
b

u
te

s

E
xt

e
rn

al

H
as

D
at

aS
pe

ci
fic

at
io

n

Id
en

tif
ia

bl
e

A
ss

et
A

d
m

in
is

tr
at

io
n

S
h

el
l

+

se
cu

rit
y:

 S
e

cu
rit

y

+

d
e

riv
e

d
F

ro
m

:
A

ss
e

tA
d

m
in

is
tra

tio
nS

he
ll*

 [
0.

.1
]

::
H

as
D

at
aS

pe
ci

fic
at

io
n

+

ha
sD

at
aS

p
e

ci
fic

at
io

n:
 R

e
fe

re
nc

e
 [

0.
.*

]

::
Id

en
tif

ia
bl

e

+

ad
m

in
is

tra
tio

n:
 A

d
m

in
is

tra
tiv

e
In

fo
rm

at
io

n
[0

..
1]

+

id
e

nt
ifi

ca
tio

n:
 Id

e
nt

ifi
e

r

::
R

ef
er

ab
le

+

id
S

ho
rt:

 s
tri

ng
 [

0.
.1

]

+

ca
te

g
o

ry
:

st
rin

g
 [

0.
.1

]

+

d
e

sc
rip

tio
n:

 la
ng

S
tri

ng
 [

0.
.1

]

+

p
ar

e
nt

:
R

e
fe

ra
b

le
*

[0
..

1]

H
as

D
at

aS
pe

ci
fic

at
io

n

H
as

K
in

d

H
as

S
em

an
tic

s

Id
en

tif
ia

bl
e

Q
ua

lif
ia

bl
e

S
u

b
m

o
d

el

::
H

as
S

em
an

tic
s

+

se
m

an
tic

Id
:

R
e

fe
re

nc
e

 [
0.

.1
]

::
Q

ua
lif

ia
bl

e

+

q
ua

lif
ie

r:
 C

o
ns

tra
in

t [
0.

.*
]

::
H

as
D

at
aS

pe
ci

fic
at

io
n

+

ha
sD

at
aS

p
e

ci
fic

at
io

n:
 R

e
fe

re
nc

e
 [

0.
.*

]

::
Id

en
tif

ia
bl

e

+

ad
m

in
is

tra
tio

n:
 A

d
m

in
is

tra
tiv

e
In

fo
rm

at
io

n
[0

..
1]

+

id
e

nt
ifi

ca
tio

n:
 Id

e
nt

ifi
e

r

::
H

as
K

in
d

+

ki
nd

:
K

in
d

 [
0.

.1
]

=
 In

st
an

ce

::
R

ef
er

ab
le

+

id
S

ho
rt:

 s
tri

ng
 [

0.
.1

]

+

ca
te

g
o

ry
:

st
rin

g
 [

0.
.1

]

+

d
e

sc
rip

tio
n:

 la
ng

S
tri

ng
 [

0.
.1

]

+

p
ar

e
nt

:
R

e
fe

ra
b

le
*

[0
..

1]

«e
nu

m
e

ra
tio

n»

K
in

d

Ty

p
e

In

st
an

ce

«e
xt

e
rn

al
»

P
ro

p
er

ty
 D

ef
in

it
io

n
 I

E
C

 6
13

60

H
as

D
at

aS
pe

ci
fic

at
io

n

H
as

K
in

d

H
as

S
em

an
tic

s

Q
ua

lif
ia

bl
e

R
ef

er
ab

le

«a
b

st
ra

ct
»

S
u

b
m

o
d

el
E

le
m

en
t

::
H

as
S

em
an

tic
s

+

se
m

an
tic

Id
:

R
e

fe
re

nc
e

 [
0.

.1
]

::
Q

ua
lif

ia
bl

e

+

q
ua

lif
ie

r:
 C

o
ns

tra
in

t [
0.

.*
]

::
H

as
D

at
aS

pe
ci

fic
at

io
n

+

ha
sD

at
aS

p
e

ci
fic

at
io

n:
 R

e
fe

re
nc

e
 [

0.
.*

]

::
H

as
K

in
d

+

ki
nd

:
K

in
d

 [
0.

.1
]

=
 In

st
an

ce

::
R

ef
er

ab
le

+

id
S

ho
rt:

 s
tri

ng
 [

0.
.1

]

+

ca
te

g
o

ry
:

st
rin

g
 [

0.
.1

]

+

d
e

sc
rip

tio
n:

 la
ng

S
tri

ng
 [

0.
.1

]

+

p
ar

e
nt

:
R

e
fe

ra
b

le
*

[0
..

1]

H
as

D
at

aS
pe

ci
fic

at
io

n

H
as

K
in

d

Id
en

tif
ia

bl
e

A
ss

et

+

as
se

tId
e

nt
ifi

ca
tio

nM
o

d
e

l:
S

ub
m

o
d

e
l*

 [
0.

.1
]

::
H

as
D

at
aS

pe
ci

fic
at

io
n

+

ha
sD

at
aS

p
e

ci
fic

at
io

n:
 R

e
fe

re
nc

e
 [

0.
.*

]

::
Id

en
tif

ia
bl

e

+

ad
m

in
is

tra
tio

n:
 A

d
m

in
is

tra
tiv

e
In

fo
rm

at
io

n
[0

..
1]

+

id
e

nt
ifi

ca
tio

n:
 Id

e
nt

ifi
e

r

::
H

as
K

in
d

+

ki
nd

:
K

in
d

 [
0.

.1
]

=
 In

st
an

ce

::
R

ef
er

ab
le

+

id
S

ho
rt:

 s
tri

ng
 [

0.
.1

]

+

ca
te

g
o

ry
:

st
rin

g
 [

0.
.1

]

+

d
e

sc
rip

tio
n:

 la
ng

S
tri

ng
 [

0.
.1

]

+

p
ar

e
nt

:
R

e
fe

ra
b

le
*

[0
..

1]

D
at

aE
le

m
en

t

P
ro

p
er

ty

+

va
lu

e
Ty

p
e

:
an

yS
im

p
le

Ty
p

e
D

e
f

+

va
lu

e
:

P
ro

p
e

rty
V

al
ue

Ty
p

e
 [

0.
.1

]

::
H

as
S

em
an

tic
s

+

se
m

an
tic

Id
:

R
e

fe
re

nc
e

 [
0.

.1
]

::
Q

ua
lif

ia
bl

e

+

q
ua

lif
ie

r:
 C

o
ns

tra
in

t [
0.

.*
]

::
H

as
D

at
aS

pe
ci

fic
at

io
n

+

ha
sD

at
aS

p
e

ci
fic

at
io

n:
 R

e
fe

re
nc

e
 [

0.
.*

]

::
H

as
K

in
d

+

ki
nd

:
K

in
d

 [
0.

.1
]

=
 In

st
an

ce

::
R

ef
er

ab
le

+

id
S

ho
rt:

 s
tri

ng
 [

0.
.1

]

+

ca
te

g
o

ry
:

st
rin

g
 [

0.
.1

]

+

d
e

sc
rip

tio
n:

 la
ng

S
tri

ng
 [

0.
.1

]

+

p
ar

e
nt

:
R

e
fe

ra
b

le
*

[0
..

1]

E
xe

m
p

la
ry

 S
ub

m
o

d
e

l

E
le

m
e

nt
 "

P
ro

p
e

rty
",

o
th

e
r

su
b

e
le

m
e

nt
 s

ub
ty

p
e

s

in
cl

ud
e

 o
p

e
ra

tio
ns

,

co
lle

ct
io

ns
,

fil
e

s
e

tc
.

«
e

x
te

rn
a

l

g
lo

b
a

l

re
fe

re
n

c
e

»

0
..

*

0
..

*

1

ANNEX | 125

Figure 66 Access Control with inherited attributes

c
la

s
s

 O
v

e
rv

ie
w

 A
tt

ri
b

u
te

 B
a

s
e

d
 A

c
c

e
s

s
 C

o
n

tr
o

l
(A

B
A

C
)

w
it

h
 R

e
fe

ra
b

le
E

le
m

e
n

ts
 w

it
h

 i
n

h
te

ri
te

d
 a

tt
ri

b
u

te
s

Q
u

a
li

fi
a

b
le

R
e

fe
ra

b
le

A
c

c
e

s
s

P
e

rm
is

s
io

n
R

u
le

+

ta
rg

e
tS

u
b

je
c
tA

tt
ri

b
u

te
s:

 S
u

b
je

c
tA

tt
ri

b
u

te
s

[1
..

*]

+

p
e

rm
is

si
o

n
sP

e
rO

b
je

c
t:

 P
e

rm
is

si
o

n
sP

e
rO

b
je

c
t

[0
..

*]

::
Q

u
a

li
fi

a
b

le

+

q
u

a
li

fi
e

r:
 C

o
n

st
ra

in
t

[0
..

*]

::
R

e
fe

ra
b

le

+

id
S

h
o

rt
:

st
ri

n
g

 [
0

..
1

]

+

c
a

te
g

o
ry

:
st

ri
n

g
 [

0
..

1
]

+

d
e

sc
ri

p
ti

o
n

:
la

n
g

S
tr

in
g

 [
0

..
1

]

+

p
a

re
n

t:
 R

e
fe

ra
b

le
*

[0
..

1
]

A
c

c
e

s
s

C
o

n
tr

o
l

+

se
le

c
ta

b
le

S
u

b
je

c
tA

tt
ri

b
u

te
s:

 S
u

b
m

o
d

e
l*

+

d
e

fa
u

lt
S

u
b

je
c
tA

tt
ri

b
u

te
s:

 S
u

b
m

o
d

e
l*

+

se
le

c
ta

b
le

P
e

rm
is

si
o

n
s:

 S
u

b
m

o
d

e
l*

+

d
e

fa
u

lt
P

e
rm

is
si

o
n

s:
 S

u
b

m
o

d
e

l*

+

se
le

c
ta

b
le

E
n

v
ir

o
n

m
e

n
tA

tt
ri

b
u

te
s:

 S
u

b
m

o
d

e
l

[0
..

1
]

+

d
e

fa
u

lt
E

n
v
ir

o
n

m
e

n
tA

tt
ri

b
u

te
s:

 S
u

b
m

o
d

e
l*

+

a
c
c
e

ss
P

e
rm

is
si

o
n

R
u

le
:

A
c
c
e

ss
P

e
rm

is
si

o
n

R
u

le
 [

0
..

*]

S
u

b
je

c
tA

tt
ri

b
u

te
s

+

su
b

je
c
tA

tt
ri

b
u

te
:

P
ro

p
e

rt
y
 [

1
..

*]

P
e

rm
is

s
io

n
s

P
e

rO
b

je
c

t

+

o
b

je
c
t:

 R
e

fe
ra

b
le

*

+

ta
rg

e
tO

b
je

c
tA

tt
ri

b
u

te
s:

 O
b

je
c
tA

tt
ri

b
u

te
s

[0
..

1
]

+

p
e

rm
is

si
o

n
:

P
e

rm
is

si
o

n
 [

0
..

*]

P
e

rm
is

s
io

n

+

p
e

rm
is

si
o

n
:

P
ro

p
e

rt
y
*

+

ki
n

d
O

fP
e

rm
is

si
o

n
:

P
e

rm
is

si
o

n
K

in
d

«
e

n
u

m
e

ra
ti

o
n

»

P
e

rm
is

s
io

n
K

in
d

a

ll
o

w

d

e
n

y

n

o
t

a
p

p
li

c
a

b
le

u

n
d

e
fi

n
e

d

p
e
rm

is
si

o
n

 f
o

r
e
x
a
m

p
le

:

re
a
d

,
w

ri
te

,
d

e
le

te

a
s

d
e
fi
n

e
d

 i
n

 s
u

b
m

o
d

e
l

se
le

ct
a
b
le

P
e
rm

is
si

o
n

s

in
 A

cc
e
ss

C
o
n

tr
o
l

C
o

n
s
tr

a
in

t

F
o

rm
u

la

+

d
e

p
e

n
d

sO
n

:
R

e
fe

re
n

c
e

*
[0

..
*]

«
e

n
u

m
e

ra
ti

o
n

»

R
e

fe
ra

b
le

E
le

m
e

n
ts

A

c
c
e

ss
P

e
rm

is
si

o
n

R
u

le

B

lo
b

C

o
n

c
e

p
tD

ic
ti

o
n

a
ry

D

a
ta

E
le

m
e

n
t

F

il
e

E

v
e

n
t

O

p
e

ra
ti

o
n

O

p
e

ra
ti

o
n

V
a

ri
a

b
le

P

ro
p

e
rt

y

R

e
fe

re
n

c
e

E
le

m
e

n
t

R

e
la

ti
o

n
sh

ip
E

le
m

e
n

t

S

u
b

m
o

d
e

lE
le

m
e

n
t

S

u
b

m
o

d
e

lE
le

m
e

n
tC

o
ll

e
c
ti

o
n

V

ie
w

«
e

n
u

m
e

ra
ti

o
n

»

Id
e

n
ti

fi
a

b
le

E
le

m
e

n
ts

A

ss
e

t

A

ss
e

tA
d

m
in

is
tr

a
ti

o
n

S
h

e
ll

C

o
n

c
e

p
tD

e
sc

ri
p

ti
o

n

S

u
b

m
o

d
e

l

P
o

li
c

y
A

d
m

in
is

tr
a

ti
o

n
P

o
in

t

+

lo
c
a

lA
c
c
e

ss
C

o
n

tr
o

l:
 A

c
c
e

ss
C

o
n

tr
o

l
[0

..
1

]

+

e
x
te

rn
a

lA
c
c
e

ss
C

o
n

tr
o

l:
 E

n
d

p
o

in
t

[0
..

1
]

su
b

je
c
t

a
tt

ri
b

u
te

s
(k

in
d

=
T
y
p

e
)

a
re

d
e
fi
n

e
d

 i
n

 s
u

b
m

o
d

e
l

se
le

ct
a
b
le

S
u

b
je

ct
A

tt
ri

b
u

te
s

in

A
cc

e
ss

C
o
n

tr
o
l.

A
n

 a
u

th
e
n

ti
ca

te
d
 s

u
b
je

ct
 i
s

d
e
sc

ri
b

e
d

 v
ia

 i
ts

 a
tt

ri
b

u
te

s
lik

e

O
P

C
 U

A
 r

o
le

,
q

u
a
lif

ic
a
ti
o

n
 (

in
 c

a
se

o
f

h
u

m
a
n

 s
u

b
je

c
ts

),
 .
...

H
a

s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

Id
e

n
ti

fi
a

b
le

A
s

s
e

tA
d

m
in

is
tr

a
ti

o
n

S
h

e
ll

+

se
c
u

ri
ty

:
S

e
c
u

ri
ty

+

d
e

ri
v
e

d
F

ro
m

:
A

ss
e

tA
d

m
in

is
tr

a
ti

o
n

S
h

e
ll

*
[0

..
1

]

::
H

a
s
D

a
ta

S
p

e
c
if

ic
a

ti
o

n

+

h
a

sD
a

ta
S

p
e

c
if

ic
a

ti
o

n
:

R
e

fe
re

n
c
e

 [
0

..
*]

::
Id

e
n

ti
fi

a
b

le

+

a
d

m
in

is
tr

a
ti

o
n

:
A

d
m

in
is

tr
a

ti
v
e

In
fo

rm
a

ti
o

n
 [

0
..

1
]

+

id
e

n
ti

fi
c
a

ti
o

n
:

Id
e

n
ti

fi
e

r

::
R

e
fe

ra
b

le

+

id
S

h
o

rt
:

st
ri

n
g

 [
0

..
1

]

+

c
a

te
g

o
ry

:
st

ri
n

g
 [

0
..

1
]

+

d
e

sc
ri

p
ti

o
n

:
la

n
g

S
tr

in
g

 [
0

..
1

]

+

p
a

re
n

t:
 R

e
fe

ra
b

le
*

[0
..

1
]

se
c
u

ri
ty

in
c
lu

d
e
s

E
n

v
ir
o

n
m

e
n

t
C

o
n

d
it
io

n
s

a
re

 s
p

e
c
if
ie

d
 i
n

 f
o

rm
u

la
s

(i
n

h
e
ri
te

d
 v

ia
 Q

u
a
lif

ia
b

le
)

O
b

je
c

tA
tt

ri
b

u
te

s

+

o
b

je
c
tA

tt
ri

b
u

te
:

P
ro

p
e

rt
y
 [

1
..

*]

126 | ANNEX

Figure 67 Submodel Element Collection with inheritance

class Submodel Element Collections with inheritance

HasDataSpecification

HasKind

HasSemantics

Qualifiable

Referable

«abstract»

SubmodelElement

::HasSemantics

+ semanticId: Reference [0..1]

::Qualifiable

+ qualifier: Constraint [0..*]

::HasDataSpecification

+ hasDataSpecification: Reference [0..*]

::HasKind

+ kind: Kind [0..1] = Instance

::Referable

+ idShort: string [0..1]

+ category: string [0..1]

+ description: langString [0..1]

+ parent: Referable* [0..1]

SubmodelElementCollection

+ value: SubmodelElement [0..*]

+ ordered: boolean [0..1] = false

+ allowDuplicates: boolean [0..1] = false

::HasSemantics

+ semanticId: Reference [0..1]

::Qualifiable

+ qualifier: Constraint [0..*]

::HasDataSpecification

+ hasDataSpecification: Reference [0..*]

::HasKind

+ kind: Kind [0..1] = Instance

::Referable

+ idShort: string [0..1]

+ category: string [0..1]

+ description: langString [0..1]

+ parent: Referable* [0..1]

HasSemantics

Qualifier

+ qualifierType: QualifierType

+ qualifierValue: PropertyValueType

::HasSemantics

+ semanticId: Reference [0..1]

«abstract»

Constraint

ANNEX | 127

Annex E. XML schemas and complete example

1. XML Schemas for Administration Shell

The schema is splitted into two parts:

• The main concepts of the Administration Shell (AAS.xsd)

• The Data Specification Template IEC61360 (IEC616360.xsd)

Subsequently, an example in XML is discussed.

2. Schema for overall Administration Shell
 <?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="http://www.admin-shell.io/aas/1/0"

 elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:aas="http://www.admin-shell.io/aas/1/0" xmlns:IEC61360="http://www.admin-shell.io/IEC61360/1/0">

 <import schemaLocation="IEC61360.xsd" namespace="http://www.admin-shell.io/IEC61360/1/0">

 </import>

 <element name="aasenv" type="aas:aasenv_t"></element>

 <complexType name="aasenv_t">

 <sequence>

 <element name="assetAdministrationShells" type="aas:assetAdministrationShells_t" 

 minOccurs="0" maxOccurs="1">

 </element>

 <element name="assets" type="aas:assets_t" minOccurs="0" maxOccurs="1"></element>

 <element name="submodels" type="aas:submodels_t" minOccurs="0" maxOccurs="1"></element>

 <element name="conceptDescriptions" type="aas:conceptDescriptions_t" 

 minOccurs="0" maxOccurs="1"></element>

 </sequence>

 </complexType>

 <complexType name="assetAdministrationShells_t">

 <sequence>

 <element name="assetAdministrationShell" type="aas:assetAdministrationShell_t"

 minOccurs="0" maxOccurs="unbounded">

 </element>

 </sequence>

 </complexType>

 <complexType name="assets_t">

 <sequence>

 <element name="asset" type="aas:asset_t" minOccurs="0"

 maxOccurs="unbounded">

 </element>

 </sequence>

 </complexType>

 <complexType name="asset_t">

 <sequence>

 <group ref="aas:identifiable"></group>

 <group ref="aas:hasDataSpecifications"></group>

 <group ref="aas:hasKind"></group>

 <element name="assetIdentificationModelRef" type="aas:reference_t" minOccurs="0"

maxOccurs="1"></element>

 </sequence>

 </complexType>

 <complexType name="assetAdministrationShell_t">

 <sequence>

 <group ref="aas:identifiable"></group>

 <group ref="aas:hasDataSpecifications"></group>

 <element name="derivedFrom" type="aas:reference_t" minOccurs="0" maxOccurs="1"></element>

 <element name="assetRef" type="aas:reference_t" minOccurs="1" maxOccurs="1"></element>

 <element name="submodelRefs" type="aas:submodelRefs_t" minOccurs="0" maxOccurs="1"></element>

 <element name="views" type="aas:views_t" minOccurs="0" maxOccurs="1"></element>

 <element name="conceptDictionaries"

 type="aas:conceptDictionaries_t" minOccurs="0" maxOccurs="1">

 </element>

 </sequence>

 </complexType>

 <complexType name="submodel_t">

 <sequence>

 <group ref="aas:identifiable"></group>

 <group ref="aas:hasDataSpecifications"></group>

 <group ref="aas:hasSemantics"></group>

 <group ref="aas:hasKind"></group>

 <group ref="aas:qualifiable"></group>

 <element name="submodelElements" type="aas:submodelElements_t"></element>

128 | ANNEX

 </sequence>

 </complexType>

 <complexType name="conceptDescription_t">

 <sequence>

 <group ref="aas:identifiable"></group>

 <group ref="aas:hasDataSpecifications"></group>

 <element name="isCaseOf" type="aas:reference_t" maxOccurs="unbounded" minOccurs="0"></element>

 </sequence>

 </complexType>

 <complexType name="view_t">

 <sequence>

 <group ref="aas:referable"></group>

 <group ref="aas:hasSemantics"></group>

 <group ref="aas:hasDataSpecifications"></group>

 <element name="containedElements" type="aas:containedElements_t"></element>

 </sequence>

 </complexType>

 <complexType name="submodelElements_t">

 <sequence>

 <element name="submodelElement" type="aas:submodelElement_t" 

 minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <complexType name="submodelElementAbstract_t">

 <sequence>

 <group ref="aas:referable"></group>

 <group ref="aas:hasSemantics"></group>

 <group ref="aas:hasDataSpecifications"></group>

 <group ref="aas:hasKind"></group>

 <group ref="aas:qualifiable"></group>

 </sequence>

 </complexType>

 <complexType name="submodelRefs_t">

 <sequence>

 <element name="submodelRef" type="aas:reference_t" minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <complexType name="views_t">

 <sequence>

 <element name="view" type="aas:view_t" minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <complexType name="conceptDictionary_t">

 <sequence>

 <group ref="aas:referable"></group>

 <element name="conceptDescriptionRefs" type="aas:conceptDescriptionsRef_t" 

 minOccurs="0" maxOccurs="1"></element>

 </sequence>

 </complexType>

 <complexType name="conceptDescriptions_t">

 <sequence>

 <element name="conceptDescription" type="aas:conceptDescription_t" 

 minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <complexType name="conceptDictionaries_t">

 <sequence>

 <element name="conceptDictionary" type="aas:conceptDictionary_t" 

 minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <complexType name="submodels_t">

 <sequence>

 <element name="submodel" type="aas:submodel_t" minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <complexType name="containedElements_t">

 <sequence>

 <element name="containedElementRef" type="aas:reference_t"></element>

 </sequence>

 </complexType>

 <complexType name="submodelElement_t">

 <choice>

 <element name="property" type="aas:property_t"></element>

 <element name="file" type="aas:file_t"></element>

 <element name="blob" type="aas:blob_t"></element>

 <element name="referenceElement"

 type="aas:referenceElement_t">

 </element>

ANNEX | 129

 <element name="submodelElementCollection"

 type="aas:submodelElementCollection_t">

 </element>

 <element name="relationshipElement"

 type="aas:relationshipElement_t">

 </element>

 <element name="operation" type="aas:operation_t"></element>

 <element name="operationVariable"

 type="aas:operationVariable_t">

 </element>

 <element name="event" type="aas:event_t"></element>

 </choice>

 </complexType>

 <complexType name="property_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="valueType" type="string"></element>

 <element name="value" type="aas:propertyValueType_t" maxOccurs="1" minOccurs="0"></element>

 <element name="valueId" type="aas:reference_t" maxOccurs="1" minOccurs="0"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="file_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="mimeType" type="string"></element>

 <element name="value" type="aas:pathType_t"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="blob_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="mimeType" type="string"></element>

 <element name="value" type="aas:blobType_t"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="referenceElement_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="value" type="aas:reference_t"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="submodelElementCollection_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="value" type="aas:submodelElements_t"></element>

 <element name="ordered" type="boolean"></element>

 <element name="allowDuplicates" type="boolean"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="relationshipElement_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="first" type="aas:reference_t"></element>

 <element name="second" type="aas:reference_t"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="operation_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="in" type="aas:operationVariable_t"></element>

 <element name="out" type="aas:operationVariable_t"></element>

 </sequence>

 </extension>

 </complexContent>

130 | ANNEX

 </complexType>

 <complexType name="operationVariable_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 <element name="value" type="aas:submodelElement_t"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="event_t">

 <complexContent>

 <extension base="aas:submodelElementAbstract_t">

 <sequence>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="dataSpecificationContent_t">

 <choice>

 <element name="dataSpecificationIEC61360" type="IEC61360:dataSpecificationIEC61630_t"></element>

 </choice>

 </complexType>

 <complexType name="conceptDescriptionsRef_t">

 <sequence>

 <element name="conceptDescriptionRef" type="aas:reference_t" 

 minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <complexType name="pathType_t">

 <simpleContent>

 <extension base="string"></extension>

 </simpleContent>

 </complexType>

 <complexType name="blobType_t">

 <simpleContent>

 <extension base="base64Binary"></extension>

 </simpleContent>

 </complexType>

 <complexType name="idPropertyDefinition_t">

 <simpleContent>

 <extension base="string">

 <attribute name="idType" type="string" />

 </extension>

 </simpleContent>

 </complexType>

 <complexType name="idShort_t">

 <simpleContent>

 <extension base="string">

 </extension>

 </simpleContent>

 </complexType>

 <complexType name="administration_t">

 <sequence>

 <element name="version" type="string" minOccurs="0"

 maxOccurs="1" />

 <element name="revision" type="string" minOccurs="0"

 maxOccurs="1" />

 </sequence>

 </complexType>

 <complexType name="identification_t">

 <simpleContent>

 <extension base="string">

 <attribute name="idType" use="optional">

 <simpleType>

 <restriction base="string">

 <enumeration value="URI"></enumeration>

 <enumeration value="IRDI"></enumeration>

 <enumeration value="Custom"></enumeration>

 </restriction>

 </simpleType>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 <group name="identifiable">

 <sequence>

ANNEX | 131

 <group ref="aas:referable"></group>

 <element name="identification" type="aas:identification_t" 

 minOccurs="0" maxOccurs="1"></element>

 <element name="administration" type="aas:administration_t" 

 minOccurs="0" maxOccurs="1"></element>

 </sequence>

 </group>

 <group name="referable">

 <sequence>

 <element name="idShort" type="aas:idShort_t" minOccurs="0" maxOccurs="1"></element>

 <element name="category" type="string" minOccurs="0" maxOccurs="1"></element>

 <element name="description"

 type="aas:langStrings_t" minOccurs="0" maxOccurs="1">

 </element>

 <element name="parent" type="string" minOccurs="0" maxOccurs="1"></element>

 </sequence>

 </group>

 <complexType name="qualifiers_t">

 <sequence>

 <element name="qualifier" type="string" minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <group name="qualifiable">

 <sequence>

 <element name="qualifier" type="aas:constraint_t" minOccurs="0" maxOccurs="1"></element>

 </sequence>

 </group>

 <group name="hasDataSpecifications">

 <sequence>

 <element name="embeddedDataSpecification" type="aas:embeddedDataSpecification_t" 

 maxOccurs="unbounded" minOccurs="0"></element>

 </sequence>

 </group>

 <group name="hasSemantics">

 <sequence>

 <element name="semanticId" type="aas:semanticId_t" minOccurs="0"></element>

 </sequence>

 </group>

 <complexType name="semanticId_t">

 <complexContent>

 <extension base="aas:reference_t"></extension>

 </complexContent>

 </complexType>

 <complexType name="reference_t">

 <sequence>

 <element name="keys" type="aas:keys_t"></element>

 </sequence>

 </complexType>

 <complexType name="qualifier_t">

 <sequence>

 <group ref="aas:hasSemantics"></group>

 <element name="qualifierType" type="string"></element>

 <element name="qualifierValue" type="string" maxOccurs="1" minOccurs="0"></element>

 <element name="qualifierValueId" type="aas:reference_t" maxOccurs="1" minOccurs="0"></element>

 </sequence>

 </complexType>

 <complexType name="formula_t">

 <sequence>

 <element name="dependsOn" type="aas:references_t"></element>

 </sequence>

 </complexType>

 <complexType name="constraint_t">

 <choice>

 <element name="qualifier" type="aas:qualifier_t"></element>

 <element name="formula" type="aas:formula_t"></element>

 </choice>

 </complexType>

 <complexType name="references_t">

 <sequence>

 <element name="reference" type="aas:reference_t" minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <group name="hasKind">

 <sequence>

 <element name="kind" minOccurs="0" maxOccurs="1">

 <simpleType>

 <restriction base="string">

 <enumeration value="Type"></enumeration>

 <enumeration value="Instance"></enumeration>

132 | ANNEX

 </restriction>

 </simpleType>

 </element>

 </sequence>

 </group>

 <complexType name="keys_t">

 <sequence>

 <element ref="aas:key" minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <element name="key" type="aas:key_t"></element>

 <attributeGroup name="keyTypes">

 <attribute name="localKeyType" use="optional">

 <simpleType>

 <restriction base="string">

 <enumeration value="idShort"></enumeration>

 </restriction>

 </simpleType>

 </attribute>

 <attribute name="identifierType" use="optional">

 <simpleType>

 <restriction base="string">

 <enumeration value="IRDI"></enumeration>

 <enumeration value="URI"></enumeration>

 <enumeration value="Custom"></enumeration>

 </restriction>

 </simpleType>

 </attribute>

 </attributeGroup>

 <complexType name="key_t">

 <simpleContent>

 <extension base="string">

 <attribute name="type">

 <simpleType>

 <restriction base="string">

 <enumeration value="GlobalReference"></enumeration>

 <enumeration value="ConceptDictionary"></enumeration>

 <enumeration value="AccessPermissionRule"></enumeration>

 <enumeration value="DataElement"></enumeration>

 <enumeration value="View"></enumeration>

 <enumeration value="Property"></enumeration>

 <enumeration value="SubmodelElement"></enumeration>

 <enumeration value="File"></enumeration>

 <enumeration value="Blob"></enumeration>

 <enumeration value="ReferenceElement"></enumeration>

 <enumeration value="SubmodelElementCollection"></enumeration>

 <enumeration value="RelationShipElement"></enumeration>

 <enumeration value="Event"></enumeration>

 <enumeration value="Operation"></enumeration>

 <enumeration value="OperationVariable"></enumeration>

 <enumeration value="AssetAdministrationShell"></enumeration>

 <enumeration value="Submodel"></enumeration>

 <enumeration value="ConceptDescription"></enumeration>

 <enumeration value="Asset"></enumeration>

 </restriction>

 </simpleType>

 </attribute>

 <attribute name="idType">

 <simpleType>

 <restriction base="string">

 <enumeration value="idShort"></enumeration>

 <enumeration value="IRDI"></enumeration>

 <enumeration value="URI"></enumeration>

 <enumeration value="Custom"></enumeration>

 </restriction>

 </simpleType>

 </attribute>

 <attribute name="local" type="boolean"></attribute>

 </extension>

 </simpleContent>

 </complexType>

 <complexType name="langString_t">

 <simpleContent>

 <extension base="string">

 <attribute name="lang" type="string" />

 </extension>

 </simpleContent>

 </complexType>

 <complexType name="langStrings_t">

 <sequence>

 <element name="langString" type="aas:langString_t" minOccurs="0" maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

ANNEX | 133

 <complexType name="embeddedDataSpecification_t">

 <sequence>

 <element name="hasDataSpecification"

 type="aas:reference_t" maxOccurs="1" minOccurs="0">

 </element>

 <element name="dataSpecificationContent"

 type="aas:dataSpecificationContent_t" maxOccurs="1"

 minOccurs="0">

 </element>

 </sequence>

 </complexType>

 <complexType name="prvalueType_t"></complexType>

 <complexType name="propertyValueType_t">

 <simpleContent>

 <extension base="string"></extension>

 </simpleContent>

 </complexType>

</schema>

Note:  designates line-wrap for purpose of layout

3. AAS IEC61360 Datatype

For IEC 61360, a data specification is made available, individually:

 <?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.admin-shell.io/IEC61360/1/0"

 xmlns:IEC61360="http://www.admin-shell.io/IEC61360/1/0"

 xmlns:aas="http://www.admin-shell.io/aas/1/0" xmlns:Q1="aas">

 <xsd:import schemaLocation="AAS.xsd"

 namespace="http://www.admin-shell.io/aas/1/0">

 </xsd:import>

 <xsd:complexType name="dataSpecificationIEC61630_t">

 <xsd:sequence>

 <xsd:element ref="IEC61360:preferredName" maxOccurs="1"

 minOccurs="1">

 </xsd:element>

 <xsd:element ref="IEC61360:shortName" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:unit" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:unitId" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:valueFormat" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:sourceOfDefinition" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:symbol" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:dataType" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:definition" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:valueList" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 <xsd:element ref="IEC61360:code" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="definition_t">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="lang" type="xsd:string" />

134 | ANNEX

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="valueList_t"></xsd:complexType>

 <xsd:complexType name="code_t"></xsd:complexType>

 <xsd:element name="preferredName" type="aas:langStrings_t"></xsd:element>

 <xsd:element name="shortName" type="xsd:string"></xsd:element>

 <xsd:element name="unit" type="xsd:string"></xsd:element>

 <xsd:element name="unitId" type="aas:reference_t"></xsd:element>

 <xsd:element name="valueFormat" type="xsd:string"></xsd:element>

 <xsd:element name="sourceOfDefinition"

 type="aas:langStrings_t">

 </xsd:element>

 <xsd:element name="symbol" type="xsd:string"></xsd:element>

 <xsd:element name="dataType" type="xsd:string"></xsd:element>

 <xsd:element name="definition" type="xsd:string"></xsd:element>

 <xsd:element name="valueType" type="IEC61360:valueList_t"></xsd:element>

 <xsd:element name="code" type="IEC61360:code_t"></xsd:element>

 <xsd:element name="valueList" type="IEC61360:valueList_t"></xsd:element>

</xsd:schema>

Note:  designates line-wrap for purpose of layout

4. XML Example

For cross reference, a complete self-contained example is given, which relates to the unified example in clause 4.3.

<?xml version="1.0" encoding="UTF-8"?>

<aas:aasenv xmlns:aas="http://www.admin-shell.io/aas/1/0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:IEC="http://www.admin-shell.io/IEC61360/1/0"

 xsi:schemaLocation="http://www.admin-shell.io/aas/1/0 AAS.xsd http://www.admin-shell.io/IEC61360/1/0

IEC61360.xsd ">

 <aas:assetAdministrationShells>

 <aas:assetAdministrationShell>

 <aas:identification idType="URI">www.admin-shell.io/aas-sample/1/0</aas:identification>

 <aas:administration>

 <aas:version>1</aas:version>

 <aas:revision>0</aas:revision>

 </aas:administration>

 <aas:assetRef>

 <aas:keys>

 <aas:key type="Asset" local="false" idType="URI">http://pk.festo.com/3s7plfdrs35</aas:key>

 </aas:keys>

 </aas:assetRef>

 <aas:submodelRefs>

 <aas:submodelRef>

 <aas:keys>

 <aas:key type="Submodel" local="true" 

 idType="URI">"http://www.zvei.de/demo/submodel/12345679"</aas:key>

 </aas:keys>

 </aas:submodelRef>

 </aas:submodelRefs>

 <aas:views>

 <aas:view>

 <aas:idShort>SampleView</aas:idShort>

 <aas:containedElements>

 <aas:containedElementRef>

 <aas:keys>

 <aas:key type="Submodel" local="true"

 idType="URI">"http://www.zvei.de/demo/submodel/12345679"</aas:key>

 <aas:key type="Property" local="true" idType="idShort">rotationSpeed</aas:key>

 </aas:keys>

 </aas:containedElementRef>

ANNEX | 135

 </aas:containedElements>

 </aas:view></aas:views>

 <aas:conceptDictionaries>

 <aas:conceptDictionary>

 <aas:idShort>SampleDic</aas:idShort>

 <aas:conceptDescriptionRefs>

 <aas:conceptDescriptionRef>

 <aas:keys>

 <aas:key type="ConceptDescription" local="true" idType="URI">www.festo.com/dic/08111234</aas:key>

 </aas:keys>

 </aas:conceptDescriptionRef>

 <aas:conceptDescriptionRef>

 <aas:keys>

 <aas:key type="ConceptDescription" local="true" idType="IRDI">0173-1#02-BAA120#007</aas:key>

 </aas:keys>

 </aas:conceptDescriptionRef>

 </aas:conceptDescriptionRefs>

 </aas:conceptDictionary>

 </aas:conceptDictionaries>

 </aas:assetAdministrationShell>

 </aas:assetAdministrationShells>

 <aas:assets>

 <aas:asset>

 <aas:idShort>3s7plfdrs35</aas:idShort>

 <aas:description>

 <aas:langString lang="EN">Festo Controller</aas:langString>

 </aas:description>

 <aas:identification idType="URI">http://pk.festo.com/3s7plfdrs35</aas:identification>

 <aas:kind>Instance</aas:kind>

 </aas:asset>

 </aas:assets>

 <aas:submodels>

 <aas:submodel>

 <aas:identification idType="URI">http://www.zvei.de/demo/submodel/12345679</aas:identification>

 <aas:semanticId >

 <aas:keys>

 <aas:key idType="URI" local="false"

 type="Submodel">http://www.zvei.de/demo/submodelDefinitions/87654346</aas:key>

 </aas:keys>

 </aas:semanticId>

 <aas:kind>Instance</aas:kind>

 <aas:submodelElements>

 <aas:submodelElement>

 <aas:property>

 <aas:idShort>rotationSpeed</aas:idShort>

 <aas:category>VARIABLE</aas:category>

 <aas:semanticId>

 <aas:keys>

 <aas:key idType="URI" type="ConceptDescription"

 local="true">www.festo.com/dic/08111234</aas:key>

 </aas:keys>

 </aas:semanticId>

 <aas:valueType>double</aas:valueType>

 </aas:property>

 </aas:submodelElement>

 <aas:submodelElement>

 <aas:property>

 <aas:idShort>NMAX</aas:idShort>

 <aas:category>PARAMETER</aas:category>

 <aas:semanticId>

 <aas:keys>

 <aas:key idType="IRDI" type="GlobalReference" local="true">0173-1#02-BAA120#007</aas:key>

 </aas:keys>

 </aas:semanticId>

 <aas:valueType>double</aas:valueType>

 <aas:value>2000</aas:value>

 </aas:property>

 </aas:submodelElement>

 </aas:submodelElements>

 </aas:submodel>

 </aas:submodels>

 <aas:conceptDescriptions>

 <aas:conceptDescription>

 <aas:identification idType="URI">www.festo.com/dic/08111234</aas:identification>

 <aas:embeddedDataSpecification>

 <aas:hasDataSpecification>

 <aas:keys>

 <aas:key idType="URI" local="false"

 type="GlobalReference">www.admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360</aas:key>

 </aas:keys>

 </aas:hasDataSpecification>

 <aas:dataSpecificationContent>

 <aas:dataSpecificationIEC61360>

 <IEC:preferredName>

 <aas:langString lang="DE">Drehzahl</aas:langString>

 <aas:langString lang="EN">Rotation Speed</aas:langString>

 </IEC:preferredName>

 <IEC:shortName>N</IEC:shortName>

 <IEC:unitId>

 <aas:keys>

136 | ANNEX

 <aas:key local="false" type="GlobalReference" idType="IRDI">0173-1#05-AAA650#002</aas:key>

 </aas:keys>

 </IEC:unitId>

 <IEC:valueFormat>NR1..5</IEC:valueFormat>

 </aas:dataSpecificationIEC61360>

 </aas:dataSpecificationContent>

 </aas:embeddedDataSpecification>

 </aas:conceptDescription>

 <aas:conceptDescription>

 <aas:identification idType="IRDI">0173-1#02-BAA120#007</aas:identification>

 <aas:embeddedDataSpecification>

 <aas:hasDataSpecification>

 <aas:keys>

 <aas:key idType="URI" type="GlobalReference" 

 local="false">www.admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360</aas:key>

 </aas:keys>

 </aas:hasDataSpecification>

 <aas:dataSpecificationContent>

 <aas:dataSpecificationIEC61360>

 <IEC:preferredName>

 <aas:langString lang="DE">maximale Drehzahl</aas:langString>

 <aas:langString lang="EN">max rotation speed</aas:langString>

 </IEC:preferredName>

 <IEC:shortName>NMax</IEC:shortName>

 <IEC:unitId>

 <aas:keys>

 <aas:key type="GlobalReference" idType="IRDI" local="false">0173-1#05-AAA650#002</aas:key>

 </aas:keys>

 </IEC:unitId>

 <IEC:valueFormat>NR1..5</IEC:valueFormat>

 </aas:dataSpecificationIEC61360>

 </aas:dataSpecificationContent>

 </aas:embeddedDataSpecification>

 </aas:conceptDescription>

 </aas:conceptDescriptions>

</aas:aasenv>

Note:  designates line-wrap for purpose of layout

ANNEX | 137

Annex F. JSON schema and complete examples

1. JSON Schema for Administration Shell

The following schema uses JSON Schema28 in draft version 04 to allow for validation of JSON files.

Note: this schema is a core model; as of November 2018, it does not feature the security model, views and selected
SubmodelElements.

Table 17 JSON schema

{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "title": "AssetAdministrationShellEnvironment",

 "type": "object",

 "additionalProperties": false,

 "required": [

 "assetAdministrationShells",

 "submodels",

 "assets",

 "conceptDescriptions"

],

 "properties": {

 "assetAdministrationShells": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/AssetAdministrationShell"

 }

 },

 "submodels": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Submodel"

 }

 },

 "assets": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Asset"

 }

 },

 "conceptDescriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/ConceptDescription"

 }

 }

 },

 "definitions": {

 "AssetAdministrationShell": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "identification": {

 "$ref": "#/definitions/Identifier"

 },

 "administration": {

 "$ref":

"#/definitions/AdministrativeInformation"

 },

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 }

 },

 "anyOf": [

 {

 "$ref": "#/definitions/Property"

 },

 {

 "$ref": "#/definitions/File"

 },

 {

 "$ref": "#/definitions/Blob"

 },

 {

 "$ref": "#/definitions/ReferenceElement"

 },

 {

 "$ref":

"#/definitions/SubmodelElementCollection"

 },

 {

 "$ref": "#/definitions/RelationshipElement"

 },

 {

 "$ref": "#/definitions/Operation"

 },

 {

 "$ref": "#/definitions/OperationVariable"

 }

]

 },

 "View": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "containedElements": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Reference"

 }

 }

 }

 },

 "ConceptDictionary": {

28 see: http://json-schema.org/

http://json-schema.org/

138 | ANNEX

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "derivedFrom": {

 "$ref": "#/definitions/Reference"

 },

 "asset": {

 "$ref": "#/definitions/Reference"

 },

 "submodels": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Reference"

 }

 },

 "views": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/View"

 }

 },

 "conceptDictionaries": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/ConceptDictionary"

 }

 }

 }

 },

 "Identifier": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "id": {

 "type": "string"

 },

 "idType": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/KeyType"

 }

]

 }

 }

 },

 "KeyType": {

 "type": "string",

 "description": "",

 "x-enumNames": [

 "Custom",

 "URI",

 "IRDI",

 "IdShort"

],

 "enum": [

 "Custom",

 "URI",

 "IRDI",

 "IdShort"

]

 },

 "AdministrativeInformation": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "version": {

 "type": "string"

 },

 "revision": {

 "type": "string"

 }

 }

 },

 "Description": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "language": {

 "type": "string"

 },

 "text": {

 "type": "string"

 }

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "conceptDescriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Reference"

 }

 }

 }

 },

 "ConceptDescription": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "identification": {

 "$ref": "#/definitions/Identifier"

 },

 "administration": {

 "$ref":

"#/definitions/AdministrativeInformation"

 },

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "isCaseOf": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Reference"

 }

 }

 }

 },

 "Property": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "value": {},

 "valueType": {

 "$ref": "#/definitions/DataType"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "idShort": {

 "type": "string"

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

ANNEX | 139

 }

 },

 "Reference": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "keys": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Key"

 }

 }

 }

 },

 "Key": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "type": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/KeyElements"

 }

]

 },

 "idType": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/KeyType"

 }

]

 },

 "value": {

 "type": "string"

 },

 "local": {

 "type": [

 "boolean",

 "null"

]

 },

 "index": {

 "type": [

 "integer",

 "null"

],

 "format": "int32"

 }

 }

 },

 "KeyElements": {

 "type": "string",

 "description": "",

 "x-enumNames": [

 "GlobalReference",

 "ConceptDictionary",

 "AccessPermissionRule",

 "DataElement",

 "View",

 "Property",

 "SubmodelElement",

 "File",

 "Blob",

 "ReferenceElement",

 "SubmodelElementCollection",

 "RelationshipElement",

 "Event",

 "Operation",

 "OperationParameter",

 "AssetAdministrationShell",

 "Submodel",

 "ConceptDescription",

 "Asset"

],

 "enum": [

 "GlobalReference",

 "ConceptDictionary",

 "AccessPermissionRule",

 "DataElement",

 "View",

 "Property",

 "SubmodelElement",

 "File",

 "Blob",

 "$ref": "#/definitions/Constraint"

 }

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "valueId": {

 "$ref": "#/definitions/Reference"

 }

 }

 },

 "File": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "value": {

 "type": "string"

 },

 "valueType": {

 "$ref": "#/definitions/DataType"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "idShort": {

 "type": "string"

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

140 | ANNEX

 "ReferenceElement",

 "SubmodelElementCollection",

 "RelationshipElement",

 "Event",

 "Operation",

 "OperationParameter",

 "AssetAdministrationShell",

 "Submodel",

 "ConceptDescription",

 "Asset"

]

 },

 "ModelType": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "name": {

 "type": "string"

 }

 }

 },

 "EmbeddedDataSpecification": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "hasDataSpecification": {

 "$ref": "#/definitions/Reference"

 },

 "dataSpecificationContent": {

 "$ref":

"#/definitions/DataSpecificationContent"

 }

 }

 },

 "DataSpecificationContent": {

 "type": "object"

 },

 "Asset": {

 "additionalProperties": false,

 "properties": {

 "identification": {

 "$ref": "#/definitions/Identifier"

 },

 "administration": {

 "$ref":

"#/definitions/AdministrativeInformation"

 },

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "assetIdentificationModel": {

 "$ref": "#/definitions/Reference"

 }

 }

 },

 },

 "mimeType": {

 "type": "string"

 }

 }

 },

 "Blob": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "value": {

 "type": "string",

 "format": "byte"

 },

 "valueType": {

 "$ref": "#/definitions/DataType"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "idShort": {

 "type": "string"

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "mimeType": {

 "type": "string"

 }

 }

 },

 "ReferenceElement": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "value": {

 "$ref": "#/definitions/Reference"

 },

 "valueType": {

 "$ref": "#/definitions/DataType"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "idShort": {

 "type": "string"

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

ANNEX | 141

 "Kind": {

 "type": "string",

 "description": "",

 "x-enumNames": [

 "Type",

 "Instance"

],

 "enum": [

 "Type",

 "Instance"

]

 },

 "Submodel": {

 "additionalProperties": false,

 "properties": {

 "identification": {

 "$ref": "#/definitions/Identifier"

 },

 "administration": {

 "$ref":

"#/definitions/AdministrativeInformation"

 },

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "submodelElements": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/SubmodelElement"

 }

 }

 }

 },

 "Constraint": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "modelType": {

 "$ref": "#/definitions/ModelType"

 }

 },

 "anyOf": [

 {

 "$ref": "#/definitions/Formula"

 },

 {

 "$ref": "#/definitions/Qualifier"

 }

]

 },

 "DataType": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "dataObjectType": {

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 }

 }

 },

 "SubmodelElementCollection": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "value": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/SubmodelElement"

 }

 },

 "valueType": {

 "$ref": "#/definitions/DataType"

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "idShort": {

 "type": "string"

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "allowDuplicates": {

142 | ANNEX

 "$ref": "#/definitions/DataObjectType"

 }

 }

 },

 "DataObjectType": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "name": {

 "type": "string"

 }

 }

 },

 "Operation": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

 },

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "in": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/OperationVariable"

 }

 },

 "out": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/OperationVariable"

 }

 }

 }

 },

 "OperationVariable": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

 },

 "idShort": {

 "type": "string"

 "type": "boolean"

 },

 "ordered": {

 "type": "boolean"

 }

 }

 },

 "RelationshipElement": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "idShort": {

 "type": "string"

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "first": {

 "$ref": "#/definitions/Reference"

 },

 "second": {

 "$ref": "#/definitions/Reference"

 }

 }

 },

 "Qualifier": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "qualifierType": {

 "type": "string"

 },

 "qualifierValue": {},

 "qualifierValueId": {

 "$ref": "#/definitions/Reference"

 }

 }

 },

 "Formula": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "dependsOn": {

ANNEX | 143

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "items": {

 "$ref":

"#/definitions/EmbeddedDataSpecification"

 }

 },

 "index": {

 "type": [

 "integer",

 "null"

],

 "format": "int32"

 },

 "dataType": {

 "$ref": "#/definitions/DataType"

 }

 }

 },

 "SubmodelElement": {

 "type": "object",

 "properties": {

 "semanticId": {

 "$ref": "#/definitions/Reference"

 },

 "constraints": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Constraint"

 }

 },

 "idShort": {

 "type": "string"

 },

 "category": {

 "type": "string"

 },

 "descriptions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Description"

 }

 },

 "parent": {

 "$ref": "#/definitions/Reference"

 },

 "kind": {

 "oneOf": [

 {

 "type": "null"

 },

 {

 "$ref": "#/definitions/Kind"

 }

]

 },

 "modelType": {

 "$ref": "#/definitions/ModelType"

 },

 "embeddedDataSpecifications": {

 "type": "array",

 "type": "array",

 "items": {

 "$ref": "#/definitions/Reference"

 }

 }

 }

 }

 }

}

Note: above content is wrapped in multiple columns;  designates line-wrap for purpose of layout

144 | ANNEX

2. JSON Example

For cross reference, a complete self-contained example is given, which relates to the unified example in clause 4.3.

Table 18 JSON complete example

{

 "assetAdministrationShells": [

 {

 "identification": {

 "id": "www.admin-shell.io/aas-sample/1.0",

 "idType": "URI"

 },

 "asset": {

 "keys": [

 {

 "type": "Asset",

 "idType": "URI",

 "value":

"http://pk.festo.com/3S7PLFDRS35",

 "local": true,

 "index": 0

 }

]

 },

 "submodels": [

 {

 "keys": [

 {

 "type": "Submodel",

 "idType": "URI",

 "value":

"http://www.zvei.de/demo/submodel/12345679",

 "local": true,

 "index": 0

 }

]

 }

],

 "views": [

 {

 "idShort": "SampleView",

 "containedElements": [

 {

 "keys": [

 {

 "type": "Property",

 "idType": "IdShort",

 "value": "rotationSpeed",

 "local": true,

 "index": 0

 }

]

 }

],

 "modelType": {

 "name": "View"

 }

 }

],

 "administration": {

 "version": "1",

 "revision": "0"

 },

 "modelType": {

 "name": "AssetAdministationShell"

 },

 "conceptDictionaries": [

 {

 "conceptDescriptions": [

 {

 "keys": [

 {

 "type": "ConceptDescription",

 "idType": "URI",

 "value":

"www.festo.com/dic/08111234",

 "local": true,

 "index": 0

 }

]

 },

 {

 "keys": [

 {

 "type": "ConceptDescription",

 "assets": [

 {

 "idShort": "3S7PLFDRS35",

 "identification": {

 "id": "http://pk.festo.com/3S7PLFDRS35",

 "idType": "URI"

 },

 "kind": "Instance",

 "descriptions": [

 {

 "language": "EN",

 "text": "Festo Controller"

 }

],

 "modelType": {

 "name": "Asset"

 }

 }

],

 "conceptDescriptions": [

 {

 "embeddedDataSpecifications": [

 {

 "hasDataSpecification": {

 "keys": [

 {

 "type": "GlobalReference",

 "idType": "URI",

 "value": "www.admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC613

60",

 "local": false,

 "index": 0

 }

]

 },

 "dataSpecificationContent": {

 "preferredName": {

 "language": "EN",

 "text": "Rotation Speed"

 },

 "shortName": "N",

 "unitId": {

 "keys": [

 {

 "type": "GlobalReference",

 "idType": "IRDI",

 "value": "0173-1#05-AAA650#002",

 "local": false,

 "index": 0

 }

]

 },

 "valueFormat": "NR1..5"

 }

 }

],

 "identification": {

 "id": "www.festo.com/dic/08111234",

 "idType": "URI"

 },

 "modelType": {

 "name": "ConceptDescription"

 }

 },

 {

 "embeddedDataSpecifications": [

 {

 "hasDataSpecification": {

 "keys": [

 {

 "type": "GlobalReference",

 "idType": "URI",

 "value": "www.admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC613

60",

 "local": false,

 "index": 0

 }

ANNEX | 145

 "idType": "IRDI",

 "value": "0173-1#02-BAA120#007",

 "local": true,

 "index": 0

 }

]

 }

]

 }

]

 }

],

 "submodels": [

 {

 "identification": {

 "id":

"http://www.zvei.de/demo/submodel/12345679",

 "idType": "URI"

 },

 "kind": "Instance",

 "semanticId": {

 "keys": [

 {

 "type": "GlobalReference",

 "idType": "URI",

 "value":

"http://www.zvei.de/demo/submodelDefinitions/8765434

6",

 "local": false,

 "index": 0

 }

]

 },

 "submodelElements": [

 {

 "idShort": "rotationSpeed",

 "modelType": {

 "name": "Property"

 },

 "valueType": {

 "dataObjectType": {

 "name": "double"

 }

 },

 "semanticId": {

 "keys": [

 {

 "type": "ConceptDescription",

 "idType": "URI",

 "value":

"www.festo.com/dic/08111234",

 "local": true,

 "index": 0

 }

]

 },

 "category": "VARIABLE"

 },

 {

 "idShort": "NMAX",

 "modelType": {

 "name": "Property"

 },

 "valueType": {

 "dataObjectType": {

 "name": "double"

 }

 },

 "semanticId": {

 "keys": [

 {

 "type": "ConceptDescription",

 "idType": "IRDI",

 "value": "0173-1#02-BAA120#007",

 "local": true,

 "index": 0

 }

]

 },

 "category": "PARAMETER"

 }

],

 "modelType": {

 "name": "Submodel"

 }}],

]

 },

 "dataSpecificationContent": {

 "preferredName": {

 "language": "EN",

 "text": "max rotation speed"

 },

 "shortName": "NMax",

 "unitId": {

 "keys": [

 {

 "type": "GlobalReference",

 "idType": "IRDI",

 "value": "0173-1#05-AAA650#002",

 "local": false,

 "index": 0

 }

]

 },

 "valueFormat": "NR1..5"

 }

 }

],

 "identification": {

 "id": "0173-1#02-BAA120#007",

 "idType": "IRDI"

 },

 "modelType": {

 "name": "ConceptDescription"

 }

 }

]

}

Note: above content is wrapped in multiple columns;  designates line-wrap for purpose of layout

146 | ANNEX

Annex G. Bibliography

[1] Recommendations for implementing the strategic initiative INDUSTRIE 4.0; acatech; April 2013;

Plattform Industrie 4.0 administrative office;

https://www.acatech.de/Publikation/recommendations-for-implementing-the-strategic-initiative-

industrie-4-0-final-report-of-the-industrie-4-0-working-group/

[2] Implementation Strategy Industrie 4.0: Report on the results of the Industrie 4.0 Platform;

BITKOM e.V., VDMA e.V., ZVEI e.V.; April 2015;

https://www.bitkom.org/noindex/Publikationen/2016/Sonstiges/Implementation-Strategy-

Industrie-40/2016-01-Implementation-Strategy-Industrie40.pdf

[3] DIN SPEC 91345:2016-04, Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) (DIN SPEC

91345:2016-04, Reference architecture model Industrie 4.0 (RAMI4.0)),

https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128

[4] Result paper “Structure of the Administration Shell, continuation of the development of the

reference model for the Industrie 4.0 component"; Plattform Industrie 4.0; April 2016;

https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/struktur-der-

verwaltungsschale.html; http://www.plattform-

i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html

[5] Leitfaden "Welche Kriterien müssen Industrie-4.0-Produkte erfüllen?" (Guidelines “What criteria

must Industrie 4.0 products meet?); ZVEI e.V.; November 2016; https://www.zvei.org/presse-

medien/publikationen/welche-kriterien-muessen-industrie-40-produkte-erfuellen/; English version

planned

[6] White paper “Beispiele zur Verwaltungsschale der Industrie 4.0-Komponente - Basisteil”

(Examples for the Administration Shell of Industrie 4.0 components - basic part); ZVEI e.V.;

November 2016; https://www.zvei.org/presse-medien/publikationen/beispiele-zur-

verwaltungsschale-der-industrie-40-komponente-basisteil/; English version planned

[7] Industrie 4.0 working paper “Aspects of the research roadmap in application scenarios”, Plattform

Industrie 4.0, April 2016; http://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/anwendungsszenarien-auf-

forschungsroadmap.html; http://www.plattform-

i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html

[8] Industrie 4.0 working paper “Fortschreibung der Anwendungsszenarien” (Continuation of the

application scenarios); Plattform Industrie 4.0; October 2016; https://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html;

http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-

roadmap.html

[9] Technical overview “Sichere Identitäten” (Secure identities); Berlin; Plattform Industrie 4.0; 2016;

https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/sichere-identitaeten.html;

http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/security-rami40-en.html

[10] DKE Deutsche Kommission Elektrotechnik, Elektronik Informationstechnik im DIN und VDE:

Die Deutsche Normungs-Roadmap Industrie 4.0 (The German standardisation roadmap Industrie

4.0); Version 2.0; 2015; http://www.din.de/de/forschung-und-innovation/industrie4-0/roadmap-

industrie40-62178

https://www.acatech.de/Publikation/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/
https://www.acatech.de/Publikation/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/
https://www.bitkom.org/noindex/Publikationen/2016/Sonstiges/Implementation-Strategy-Industrie-40/2016-01-Implementation-Strategy-Industrie40.pdf
https://www.bitkom.org/noindex/Publikationen/2016/Sonstiges/Implementation-Strategy-Industrie-40/2016-01-Implementation-Strategy-Industrie40.pdf
https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/struktur-der-verwaltungsschale.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/struktur-der-verwaltungsschale.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://www.zvei.org/presse-medien/publikationen/welche-kriterien-muessen-industrie-40-produkte-erfuellen/
https://www.zvei.org/presse-medien/publikationen/welche-kriterien-muessen-industrie-40-produkte-erfuellen/
https://www.zvei.org/presse-medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/
https://www.zvei.org/presse-medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/anwendungsszenarien-auf-forschungsroadmap.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/anwendungsszenarien-auf-forschungsroadmap.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/anwendungsszenarien-auf-forschungsroadmap.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/sichere-identitaeten.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/security-rami40-en.html
http://www.din.de/de/forschung-und-innovation/industrie4-0/roadmap-industrie40-62178
http://www.din.de/de/forschung-und-innovation/industrie4-0/roadmap-industrie40-62178

ANNEX | 147

[10] Discussion paper “Weiterentwicklung des Interaktionsmodells für Industrie 4.0-Komponenten”

(Further development of interaction model for Industrie 4.0 components); Plattform Industrie 4.0;

November 2016; https://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-

gipfel.html

[11] Definition of terms relating to Industrie 4.0; Webseite; Fraunhofer IOSB and VDI GMA

Fachausschuss 7.21; http://i40.iosb.fraunhofer.de/FA7.21%20Begriffe; accessed on 12.2.2017

[12] Industrie 4.0 working paper “Beziehungen zwischen I4.0-Komponenten – Verbundkomponenten

und intelligente Produktion” (Relationships between I4.0 components – Composite components

and smart production); Berlin; Plattform Industrie 4.0; June 2017; http://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/beziehungen-%20i40-komponenten.html

[13] Industrie 4.0 working paper “Industrie 4.0 Plug-and-Produce for Adaptable Factories”; Berlin;

Plattform Industrie 4.0; June 2017; http://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/Industrie-40-%20Plug-and-Produce.html

[14] Industrie 4.0 working paper “Security der Verwaltungsschale” (Security of the Administration

Shell); Berlin; Plattform Industrie 4.0; April 2017; http://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html

[15] DIN SPEC 92000, “Property Value Statements”, in progress

[16] Verwaltungsschale Konkret (Specifics of Administration Shell), GMA Fachausschuss 7.20, in

progress

[17] Semantics and interaction for I4.0 components, working title “Sprache für I4.0-Komponenten”

(Language for I4.0 components), GMA technology group 7.20, in progress

[18] The Structure of the Administration Shell: TRILATERAL PERSPECTIVES from France, Italy

and Germany. March 2018; https://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-trilaterale-

coop.pdf?__blob=publicationFile&v=9

[19] Zugriffssteuerung für Industrie 4.0-Komponenten zur Anwendung von Herstellern, Betreibern und

Integratoren (Access Control for Industrie 4.0 Components), Plattform Industrie 4.0 UAG Rollen

und Rechte, in progress

[20] ISO 29002-10 Industrial automation systems and integration — Exchange of characteristic data —

Part 10: Characteristic data exchange format. Technical Specification ISO/TS 29002-10:2009(E)

[21] B. Otto; S. Lohmann et.al. Reference Architecture Model for the Industrial Data Space. Fraunhofer

in cooperation with Industrial Data Space Association. 2017

[22] NIST Special Publication 800-162. Guide to Attribute Based Access Control (ABAC) Definition

and Considerations. Vincent Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin,

Robert Miller, Karen Scarfone. Jan. 2014. http://dx.doi.org/10.6028/NIST.SP.800-162

[23] IEC PAS 63088: Smart Manufacturing - Reference Architecture Model Industry 4.0 (RAMI4.0),

public available specification (PAS), International Electrotechnical Commission (IEC), 2017

[24] Sustainability of Digital Formats: Planning for Library of Congress Collections. Open Packaging

Conventions (Office Open XML), ISO 29500-2:2008-2012.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000363.shtml

https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html
http://i40.iosb.fraunhofer.de/FA7.21%20Begriffe
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/beziehungen-%20i40-komponenten.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/beziehungen-%20i40-komponenten.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/Industrie-40-%20Plug-and-Produce.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/Industrie-40-%20Plug-and-Produce.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-trilaterale-coop.pdf?__blob=publicationFile&v=9
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-trilaterale-coop.pdf?__blob=publicationFile&v=9
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-trilaterale-coop.pdf?__blob=publicationFile&v=9
http://dx.doi.org/10.6028/NIST.SP.800-162
https://www.loc.gov/preservation/digital/formats/fdd/fdd000363.shtml

148 | ANNEX

[25] Standardization of Office Open XML. Wikipedia article.

https://en.wikipedia.org/wiki/Standardization_of_Office_Open_XML

[26] OpenDocument standardization. Wikipedia article.

https://en.wikipedia.org/wiki/OpenDocument_standardization

[27] The Digital Signing Framework of the Open Packaging Conventions.

https://msdn.microsoft.com/en-us/library/aa905326.aspx

[28] Open Packaging Conventions Fundamentals. https://msdn.microsoft.com/en-

us/library/windows/desktop/dd742818(v=vs.85).aspx

[29] What is a digital signature? Fundamental principles.

http://securityaffairs.co/wordpress/5223/digital-id/what-is-a-digital-signature-fundamental-

principles.html

[30] Sustainability of Digital Formats: Planning for Library of Congress Collections. Document

Container File: Core (based on ZIP 6.3.3).

https://www.loc.gov/preservation/digital/formats/fdd/fdd000361.shtml

[31] System.IO.Packaging Namespace. MSDN article. https://msdn.microsoft.com/en-

us/library/system.io.packaging(v=vs.110).aspx

[32] DIN SPEC 16593-1 Reference Model for Industrie 4.0 Service Architectures – Part 1: Basic

Concepts of an Interaction-based Architecture; Beuth-Verlag: Berlin, Germany, 2018.

https://www.beuth.de/en/technical-rule/din-spec-16593-1/287632675

https://en.wikipedia.org/wiki/Standardization_of_Office_Open_XML
https://en.wikipedia.org/wiki/OpenDocument_standardization
https://msdn.microsoft.com/en-us/library/aa905326.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd742818(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd742818(v=vs.85).aspx
http://securityaffairs.co/wordpress/5223/digital-id/what-is-a-digital-signature-fundamental-principles.html
http://securityaffairs.co/wordpress/5223/digital-id/what-is-a-digital-signature-fundamental-principles.html
https://www.loc.gov/preservation/digital/formats/fdd/fdd000361.shtml
https://msdn.microsoft.com/en-us/library/system.io.packaging(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.packaging(v=vs.110).aspx
https://www.beuth.de/en/technical-rule/din-spec-16593-1/287632675

ANNEX | 149

This working paper has been elaborated in the working group “Models and
Standards” of the ZVEI in cooperation with the Working Groups “Reference
Architectures, Standards and Norms” (Plattform Industrie 4.0), “Security of

networked Systems” (Plattform Industrie 4.0) and “Security” (ZVEI).

AUTHORS

Erich Barnstedt, Microsoft Deutschland GmbH
Dr. Heinz Bedenbender, VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA)
Meik Billmann, ZVEI – Zentralverband Elektrotechnik- und Elektronikindustrie
Dr. Birgit Boss, Robert Bosch GmbH
Erich Clauer, SAP SE
Kai Garrels, ABB STOTZ-KONTAKT GmbH
Martin Hankel, Bosch Rexroth AG
Oliver Hillermeier, SAP SE
Dr. Michael Hoffmeister, Festo AG & Co. KG
Michael Jochem, Robert Bosch GmbH
Dr. Heiko Koziolek, ABB AG
Dr. Christoph Legat, Assystem Germany GmbH
Dr. Marco Mendes, Schneider Electric Automation GmbH
Dr. Jörg Neidig, Siemens AG
Manuel Sauer, SAP SE
Marc Schier, Microsoft Deutschland GmbH
Michael Schmitt, SAP SE
Tizian Schröder, Otto-von-Guericke-Universität Magdeburg
André Uhl, Schneider Electric Automation GmbH
Thomas Usländer, Fraunhofer IOSB, Fraunhofer Gesellschaft
Bernd Waser, Murrelektronik GmbH
Jörg Wende, IBM Deutschland GmbH
Constantin Ziesche, Robert Bosch GmbH

150 | ANNEX

www.plattform-i40.de

http://www.plattform-i40.de/

